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Abstract

This study uses the directional output distance function, a multi-
output economic production frontier model, to estimate shadow prices
for a set of non-marketed wetland ecological functions for the U.S.
mid-Atlantic region Nanticoke River watershed. The estimation proce-
dure adapts the bootstrap methods originally developed by Simar and
Wilson (1998) for nonparametric efficiency estimates to the quadratic
directional output distance function. The results from this application
suggest that for some sites in this watershed, the value of improved
wetland condition outweighs the potential value of agricultural pro-
duction. On average, estimated values for improved wetland condition
are also consistent with payments being made by the federal Wetlands
Reserve Program (WRP) in the study area.

1 Introduction

Wetlands support a variety of human activities and provide critical habitat to
numerous threatened and endangered species. In the lower 48 conterminous
U.S. states, less than half of the estimated 220 million wetlands that existed
∗Department of Economics, Lewis & Clark College
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prior to European settlement (Mitsch and Gosselink, 1986) remain today,
and many of these are degraded (U.S. EPA, 2009).

Current U.S. environmental policy seeks to protect and recover wetlands
areas, primarily through Section 404 of the 1977 Clean Water Act (CWA),
which regulates the dumping of dredge and fill materials, by funding wetland
restoration projects using the 1989 North American Wetlands Conservation
Act (NAWCA), and by purchasing voluntary landuse easements through pro-
grams such as the USDA’s Wetlands Reserve Program (WRP). Under these
policies, the granting of pollution permits and the selection of projects for
conservation funding rely on an implicit understanding of the associated costs
and benefits of wetlands management to society, even when these values are
not directly observed.

In this study, a set of wetland hydrological and biological functions are
modeled jointly with agricultural output, as part of an economic production
process to estimate the value of wetland condition at the watershed scale.
We apply the directional output distance function (Chambers et al., 1996),
a multi-output production frontier model, to the Nanticoke River water-
shed, which supports a significant and ecologically diverse system of wetland
communities in the Mid-Atlantic region of the United States. Agricultural
production accounts for much of the land use in the study watershed, and its
associated drainage and channelization activities can significantly alter the
hydrological function and biological integrity of surrounding wetland areas.

Wetland hydrological and biological function indices are combined with
agricultural land values to estimate the value of individual wetland func-
tions. In production theory, the directional output distance function is dual
to the revenue function. One can exploit that duality to derive shadow price
estimates for the hydrological and biological functions that support an ar-
ray of wetland ecosystem services in the watershed. These services include
flood control, water filtration, biodiversity,and riparian habitat. The results
from this application suggest that for some sites in the watershed, the value
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of improved wetland condition outweighs the potential value of agricultural
production. Conceivably, this price information could be used to prioritize
wetland conservation efforts and influence land use policy in the watershed.

2 Valuing wetland services

The wetlands valuation literature is extensive. In a recent survey, Brander
et al. (2006) refer to roughly 200 wetlands valuation studies, drawing on
a range of valuation methods. Broadly, non-market valuation methods can
be used to either directly or indirectly measure both the use and non-use
value of ecosystem services (Hanley et al., 2007), where use implies a physical
interaction with the environment (Barbier, 2007). For wetlands, use value can
include flood-protection, water purification, recreation and aesthetic value,
while non-use value might include the existence value of biodiversity and
native vegetation.

Contingent valuation, the most common direct approach to valuation,
uses stated preferences to estimate individuals’ willingness to pay for non-
marketed goods and services. Preferences are generally elicited through sur-
veys or choice experiments, and can be used to estimate both use and non-use
values. Notable examples of contingent valuation in the wetlands valuation
literature include Hanneman et al. (1991), Loomis et al. (2000) and more
recently, Birol et al. (2009). Heal et al. (2005) list two necessary conditions
for contingent valuation: (1) the information must be available to describe
the change in a natural ecosystem in terms of services that people care about,
in order to place a value on those services and (2) the change in the natural
ecosystem must be explained in the survey instrument in a manner that peo-
ple will understand and not reject the valuation scenario. Often, in practice
these conditions are difficult to meet, particularly as ecosystem complexity
increases, which can bias the resulting estimates of willingness to pay.

Indirect approaches to valuation rely largely on revealed preferences, ob-
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served from behavior in related markets, to estimate the implicit value (as
opposed to willingness to pay) of non-marketed goods and services. Hedo-
nic pricing methods (Rosen, 1974) offer one such approach, by using market
prices, most often for residential property, to infer value. Hedonic price meth-
ods model residential property as a composite good, composed of structural
features (e.g., square footage, lot size), neighborhood characteristics (e.g.,
school quality, demographics), and environmental attributes (e.g., proximity
to pollution, recreation opportunities). The property price, then, reflects the
aggregate value of these individual characteristics, so that the marginal value
of an individual characteristic can be derived through regression analysis.

Few hedonic pricing studies have been conducted to estimate the value of
wetlands, perhaps due to the often rural location of wetland areas. Examples
include Lupi et al. (1991), who estimate the value of wetland size, and Doss
and Taff (1996), who estimate the value of proximity to different wetland
types. Mahan et al. (2000) examine the effect of both wetland size and type
on residential property values, and extend the literature by then using the
implicit wetland prices from their hedonic model to estimate the willingness
to pay for these attributes.

Other indirect approaches that have been used to value wetlands include
the travel cost method (Cooper and Loomis, 1993), which bases value on
the amount that individuals actually spend to visit a wetland (often for
recreation activities such as bird-watching or hunting), and the estimation
of replacement costs (Breaux et al., 1995; Byström, 2000), which measures
the difference in the cost of using a wetland to provide a service (e.g., water
purification) and the cost of using a man-made alternative (e.g., a water
treatment facility).

Similar to hedonic methods, the production function approach to valua-
tion models ecosystem services as environmental inputs (Mäler, 1992; Bar-
bier, 2007) and then uses the market price of their associated outputs (e.g.,
agricultural products, fisheries) to derive input factor demands for these non-
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marketed resources. This draws on the earlier work of Becker (1965) and
Lancaster (1966) to incorporate non-marketed resources such as time into
the household production function. In this framework, household utility is a
function of goods purchased for final use, as well as goods produced internally
using both marketed and non-marketed inputs. Following this approach, one
can derive the demand function for the non-marketed inputs by maximiz-
ing household utility subject to a budget constraint. This requires some
understanding of the production function, namely the physical role of the
environmental resource as an input. Applications in the wetlands literature
include the valuation of mangroves as an input in coastal fisheries production
(Barbier, 1994) and the the valuation of groundwater recharge as an input in
agricultural production (Acharya, 2000; Koundouri and Xepapadeas, 2004).

Related to the production function approach, the frontier estimation
methods developed for productivity and efficiency analysis offer another ap-
proach to non-market valuation. These include Shephard (1970) distance
functions, hyperbolic distance functions (Färe et al., 1985) and directional
distance functions (Chambers et al., 1996). Distance functions in general pro-
vide several advantages for environmental applications. They were originally
developed for multi-input and multi-output production processes, and can
thus accommodate multiple environmental attributes. Their estimation only
requires quantity data for inputs and outputs, as opposed to price informa-
tion, which enables the incorporation of non-marketed environmental goods
and services into the production model. They also exhibit dual relationships
to economic cost, revenue and profit functions, and it is this duality in pro-
duction theory that underlies the use of distance functions as an approach
to non-market valuation. Valuation applications using distance functions
include the estimation of shadow prices for public land conservation (Färe
et al., 2001); pollution (Färe et al.,1993; 2005; 2006; Coggins and Swinton,
1996; Ball et al., 2004; Murty et al., 2007); and, in the wetlands literature,
groundwater recharge (Koundouri and Xepapadeas, 2004).
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The present study further extends this approach to the wetlands liter-
ature, by using a directional output distance function to model the joint
production of multiple wetland ecological functions and agricultural value
within a watershed. The next section outlines the theory supporting this
approach, followed by a discussion of estimation in practice. Section five
presents an application to the Nanticoke River watershed in Delaware and
an analysis of the results.

3 Underlying Theory

This study uses the directional output distance function, the production
analogue to the Luenberger (1992) benefit function, to model the joint pro-
duction of multiple wetland ecosystem services and agricultural value within
a watershed area. Let P (x) denote the feasible output set for the vector of
outputs y = (y1, ..., yM) ∈ <M

+ given inputs x = (x1, ..., xN) ∈ <N
+ , so that

P (x) = {y : x can produce y} . (1)

In this context, outputs include a set of wetland function scores that are
used to assess overall wetland condition, coupled with the value of nearby
agricultural production. The wetland functions represent separate aspects
of wetland condition, such as hydrological capacity and vegetation coverage.
Watershed land area constitutes the shared input in this joint production
process.

Following an axiomatic approach, a series of standard assumptions are
made to characterize the production technology in theory, and to then guide
the empirical specification of the model. The first of these assumptions is
that P (x) is convex and compact, so that the feasible output set is closed and
bounded from above by the production frontier. Compactness acknowledges
that output is scarce, by limiting the degree of wetland function and the level
of agricultural production for a given land parcel, while convexity shapes the
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physical tradeoffs that occur along the production frontier. Secondly, outputs
are assumed to be freely disposable, meaning that if y ∈ P (x), then y′ ∈ P (x)

for any y′ ≤ y. Free disposability allows any of the output levels to decrease
without diminishing the prospects of other outputs. The impairment of one
or more wetland functions does not necessarily reduce the potential of other
wetland functions in the watershed, or the corresponding level of agricultural
production. This also results in an implicit assumption of weak disposability,
meaning that if y ∈ P (x), then αy ∈ P (x) for any 0 ≤ α ≤ 1. It is possible
to proportionally reduce any one of the outputs at no cost to the others.

Given these assumptions, the directional output distance function pro-
vides a complete representation of the feasible output set (Chambers et al.,
1996), as well as individual measures of performance for each of the included
output observations. The directional output distance function is defined as

~DO(x, y; gy) = max {β : [y + βgy] ∈ P (x)} , (2)

where gy ∈ <M
+ is a directional vector that specifies the path of output

expansion. This model measures each observation’s distance, in a particular
direction, to the production frontier. Thus, for observations on the frontier,
~DO(x, y; gy) = 0, and for any observation below the frontier, ~DO(x, y; gy) >

0. Individual performance deteriorates with distance to the frontier, so that
the directional output distance value can be interpreted as a measure of
inefficiency for each observation.

The directional output distance function offers a more general measure
of productivity and efficiency than the more widely applied Shephard (1970)
output distance function, which measures radial distance from the frontier
and is defined as

DO(x, y) = inf
{
θ : (x,

y

θ
) ∈ P (x)

}
. (3)

In fact, the Shephard output distance function can be constructed as a special

7



case of the directional output distance function (Chambers et al., 1996) by
specifying a radial direction vector, setting gy = y. Figure 1 illustrates both
the directional output distance function and the Shephard output distance
function for y = (y1, y2).

Figure 1: The directional and Shephard output distance functions

The directional output distance function accommodates both propor-
tional and non-proportional output expansion, while the Shephard output
distance function is restricted to a radial measure of efficiency. Drawing on
the Shephard output distance function’s homogeneity in y, for the case where
gy = y,

~DO(x, y; gy) =
1

DO(x, y)
− 1. (4)

The directional output distance function can also be used to account for
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the undesirable nature of some outputs of a production process, i.e., pollu-
tion, by specifying a negative direction for those outputs (Chung et al., 1997).
This enables the simultaneous expansion of desirable output and contraction
of undesirable output in the measurement of performance.The properties of
the directional output distance function follow from the assumptions made
to characterize P (x), and include1

i. Representation

~DO(x, y; gy) ≥ 0 if and only if y ∈ P (x).

ii. Monotonicity

~DO(x, y′; gy) ≥ ~DO(x, y; gy), for y′ ≤ y

iii. Translation

~DO(x, y + αgy; gy) = ~DO(x, y; gy)− α

iv. Directional Homogeneity of degree -1

~DO(x, y;λgy) = λ−1 ~DO(x, y; gy), for λ > 0.

The directional output distance function fully represents the feasible out-
put set. The first property states that the directional output distance must
always be non-negative for any output vector within the feasible output set.
The directional distance value is zero for output levels on the frontier and
greater than zero for output levels below the frontier. Only infeasible output
levels above the frontier would take a negative directional distance value, and
any observed output vector, by existence, is feasible. The monotonicity prop-
erty states that an increase in the output vector, holding inputs constant, can
only reduce an observation’s directional distance to the frontier, and thus can
only improve the performance measure. The translation property states that
the addition of any amount, α to an observed output vector in the direction

1Chambers et al. (1998) prove these properties for the input oriented case.

9



gy reduces the directional distance value for that observation by the same
amount, α. The directional output distance function provides an additive,
as opposed to multiplicative, measure of distance to the frontier. The trans-
lation property serves as the additive analogue to the homogeneity property
exhibited by the multiplicative Shephard distance function (Chambers et al.,
1996). Related to this, the directional homogeneity property states that scal-
ing the direction vector by any positive amount, λ proportionally reduces an
observation’s distance to the frontier by the same amount, λ.

The directional output distance function is used to construct the feasible
output set for a vector of wetland functions and the value of agricultural pro-
duction within a watershed area, which enables environmental performance
assessment for each of the observation sites (Bellenger and Herlihy, 2009a;
2009b). Moreover, the resulting frontier reveals the physical tradeoffs that
exist for the production of each of the wetland functions and agricultural
output in the watershed. Given the market value of just one of the outputs,
in this application, agricultural production, it is also possible to value these
tradeoffs in monetary terms (Färe et al., 2001; 2005; 2006) by exploiting
the directional output distance function’s dual relationship to the revenue
function,

R(x, p) = max
y
{py : y ∈ P (x)} , (5)

where p = (p1, ..., pM) ∈ <M
+ is the vector of output prices corresponding to

y. By definition,

R(x, p) ≥ py,∀y ∈ P (x), (6)

and this, along with the definition of the directional output distance function
from (2) and the representation property imply
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R(x, p) ≥ p(y + ~DO(x, y; gy)gy)

≥ py + ~DO(x, y; gy)pgy. (7)

Rearranging terms in (7),

~DO(x, y; gy) ≤
R(x, p)− py

pgy
. (8)

The directional output distance function can then be recovered from the right
hand side in (8) as the solution to

~DO(x, y; gy) = min
p

R(x, p)− py
pgy

. (9)

The vector of shadow prices, p is derived by applying the envelope theorem
to (9), so that

∇y
~DO(x, y; gy) =

−p
pgy
≤ 0, (10)

and for a single observation,

pm
pm′

=
∂ ~DO(x, y; gy)/∂ym

∂ ~DO(x, y; gy)/∂ym′
,∀m,m′ ∈M. (11)
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Figure 2: Directional output distance and shadow prices

The shadow price ratio in (11) reflects the relative value of each output,
which equals the corresponding marginal performance2 ratio, as depicted in
Figure 2. If at least one of the outputs in P (x) is marketed, then it is also
possible to recover the real, as opposed to relative, value of the non-marketed
outputs (Färe et al., 2001). For example, if the m′th attribute is actually a
marketed good, and assuming its shadow price is equal to its market price,
then the price of the mth attribute can be recovered as

pm = pm′
∂ ~DO(x, y; gy)/∂ym

∂ ~DO(x, y; gy)/∂ym′
. (12)

Given the marketed nature of agricultural output, this study uses (12)
2This term refers to the marginal productivity of each wetland function. Recall, the

directional output distance function provides a measure of environmental performance for
each observation, so that marginal performance reflects the degree to which an increase in
each of the wetland functions reduces an observation’s directional distance to the output
frontier, i.e. improves performance.
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to estimate the value of each of the non-marketed (but arguably valuable)
wetland functions. The resulting price vector captures in some sense the
implicit value of these wetland functions, by valuing marginal productivity
in terms of the corresponding value of agricultural production, but is not
analogous to implicit value in the spirit of hedonic analysis. In this case
the price vector represents the value of the tradeoff between agricultural
production and each of these wetland functions in the watershed area, rather
than the value of each wetland function’s contribution to agricultural output,
as in hedonic analysis.

4 Estimation

One practical advantage afforded by the directional output distance function
lies in the flexibility of its estimation. Depending on the research objective,
one can choose to estimate this model either parametrically or nonpara-
metrically. Nonparametric estimation relies on data envelopment analysis
(DEA)(Charnes et al., 1978) methods to construct the feasible output set
as a convex, linear combination of all input and output observations. The
resulting model satisfies the assumptions made to characterize P (x) and as-
sesses performance by measuring each observation’s directional distance to
the corresponding output frontier, a piece-wise linear combination of the out-
ermost output observations. DEA estimation does not, however, generate the
smooth, differentiable output frontier required to solve for unique shadow val-
ues, as outlined in the previous section, and thus does not offer a tractable
way to evaluate the economic tradeoffs facing each of the observations3.

Hence, parametric estimation is employed to construct a differentiable
output frontier which, via duality, can then be used to value each of the non-
marketed wetland outputs following (12). Parameterization must satisfy the
axiomatic properties of the directional output distance function and enable

3Chambers and Färe (2008) offer one exception.
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the computation of marginal effects. In addition, linearity (in the parame-
ters) facilitates estimation. This limits the set of possible functional forms
considerably. To guide the choice of functional form in estimating production
frontiers, Chambers (1988) explains, “...the primary goal of applied produc-
tion analysis is empirical measurement of the economically relevant informa-
tion that exhaustively characterizes the behavior of economic agents. For
smooth technologies (i.e., those that are twice-continuously differentiable),
this includes the value of the function (e.g., the level of cost), the gradient of
the function (e.g., the derived demands), and the Hessian (e.g., the matrix
of derived-demand elasticities).”

It is possible to approximate any arbitrary smooth function with a linear
function, meaning that the parameters of the linear function can be restricted
so that the linear function value, gradient, and Hessian are equal in magni-
tude to the corresponding values of the smooth function evaluated at a par-
ticular point on its domain. Such linear functions are known as second-order
differential approximations (Chambers, 1988). It is also possible to restrict
the parameters of a linear function to provide a Taylor’s series approxima-
tion of an arbitrary smooth function. Such linear functions are known as
second-order numerical approximations (Chambers, 1988). To be considered
flexible, a functional form must either provide a second-order differential ap-
proximation or second-order numerical approximation (Chambers, 1988).

For an arbitrary smooth function F : RL → R, the second-order Taylor’s
series approximation of F (q) evaluated at q∗ ∈ RL is

F (q) = F (q∗ +DF (q∗)(q − q∗) +
1

2
(q − q∗)D2F (q∗)(q − q∗), (13)

whereDF (q∗) is the Jacobian matrix of F (q) at q∗. The generalized quadratic
(Chambers, 1988), also known as a ‘transformed quadratic function’ (Diew-
ert, 2002) or a ‘second-order Taylor series approximation interpretation func-
tion’(Färe and Sung,1986)(Färe et al., 2008), can be restricted to repre-
sent the second-order Taylor’s series approximation of an arbitrary twice-
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continuously differentiable function. This is given as

G[F (q)] = a0 +
L∑
l=1

alh(ql) +
L∑
l=1

L∑
l′=1

all′h(ql)h(ql′), (14)

where h : R → R is twice differentiable and G is invertible. The generalized
quadratic encompasses a set of flexible functional forms, flexible in both the
differential and numerical sense (Chambers, 1988). Of these, just two are
known to satisfy (with parameter restrictions) the translation property of
the directional output distance function (Färe and Lundberg, 2006). These
are the quadratic function

F (q) = a0 +
L∑
l=1

alql +
L∑
l=1

L∑
l′=1

all′qlql′ , (15)

and the unnamed function

F (q) =
1

2λ
ln

L∑
l=1

L∑
l′=1

all′exp(ql)exp(ql′). (16)

The second of these, however, does not contain the first order parameters
needed to compute marginal effects. This leaves the quadratic form as the
only known flexible functional form that can be restricted to satisfy the trans-
lation property. Most recently, Färe et al. (2010) use Monte Carlo simula-
tions to demonstrate the apparent greater ability in practice of the quadratic
directional output distance function, compared to the translog (also flexi-
ble and can be likewise restricted to satisfy homogeneity) Shephard output
distance function to characterize the output set. The quadratic (also as in
Aigner and Chu, 1968) directional output distance function(Färe et al., 2001;
2005; 2006) for gym= 1, m = 1,...,M is estimated as
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~DO(x, y; gy) =α0 +
N∑

n=1

αnxn +
M∑

m=1

βmym (17)

+
1

2

N∑
n=1

N∑
n′=1

αnn′xnxn′ +
1

2

M∑
m=1

M∑
m′=1

βmm′ymym′

+
N∑

n=1

M∑
m=1

γnmxnym.

To satisfy the translation property, set

M∑
m=1

βmgym = −1;

M∑
m=1

γnmgym = 0, n = 1, ..., N ;

M∑
m′=1

βmm′gym′ = 0,m = 1, ...,M,

and to ensure symmetric cross-input and cross-output effects, set

αnn′ = αn′n, n, n
′ = 1, ..., N ;

βmm′ = βm′m,m,m
′ = 1, ...,M,

Given the quadratic form, the marginal effect of the mth attribute is then
derived as

∂ ~DO(x, y; gy)

∂ym
= βm +

M∑
m′=1

βmm′ym′ +
N∑

n=1

M∑
m=1

γnmxn, (18)
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and the shadow price ratio for the mth and m′th attributes is written as

pm
pm′

=

βm +
M∑

m′=1

βmm′ym′ +
N∑

n=1

M∑
m=1

γnmxn

βm′ +
M∑

m=1

βmm′ym +
N∑

n=1

M∑
m′=1

γnm′xn

. (19)

One can estimate the quadratic directional output distance function as a
constrained linear programming problem, choosing the parameters to mini-
mize each observation’s distance to the frontier4. The solution to this prob-
lem, the optimal values for α0, αn, βm, αnn′ , βmm′ , γnm, and Dk

O minimize

K∑
k=1

~DO

k
(xk, yk; gy) (20)

subject to

i. Representation

~DO

k
(xk, yk; gy) ≥ 0, k = 1, ..., K,

ii. Monotonicity

∂ ~DO

k
(xk, yk; gy)

∂ykm
≤ 0,m = 1, ...,M, k = 1, ..., K,

∂ ~DO

k
(xk, yk; gy)

∂xkn
≥ 0, n = 1, ..., N, k = 1, ..., K,

4The quadratic directional output distance function can also be estimated as a stochas-
tic frontier (Färe et al., 2005), following stochastic frontier methods outlined in Kumbhakar
and Lovell (2000).
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iii. Translation

M∑
m=1

βmgym = −1;
M∑

m=1

γnmgym = 0, n = 1, ..., N ;

M∑
m′=1

βmm′gym′ = 0, m = 1, ...,M,

iv. Symmetry
αnn′ = αn′n, n, n

′ = 1, ..., N ;

βmm′ = βm′m, m,m
′ = 1, ...,M.

The constraints ensure that the quadratic form satisfies the properties
of the directional output distance function. The first constraint satisfies the
representation property by requiring all observations to either lie on or be-
low the output frontier. The second constraint states that an increase in any
output, or a decrease in any input can only reduce an observation’s distance
to the output frontier, which guarantees monotonicity for both inputs and
outputs. The third constraint imposes the translation property, restricting
the parameters so that additional output in the gym direction reduces an ob-
servation’s distance to the frontier by an equal amount. The final constraint
restates the symmetry condition for cross-input and cross-output effects.

The resulting parameter estimates, and corresponding distance and shadow
price values are based on an estimate of the true, but unobservable output
frontier. This estimated frontier depends on the given sample of observations,
rather than any a priori knowledge of the true frontier. Sampling variation,
then, would potentially not only alter the estimated frontier, but would also
affect the individual performance measures by changing each observation’s
proximity to the frontier.

Simar and Wilson (1998) introduce the bootstrap (Efron, 1979) as a way
to analyze the sensitivity of DEA estimates to sampling variation, through
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repeated sampling. A similar approach is applied to the directional output
distance function herein, to better understand the statistical properties of the
distance and shadow price estimates. This method solves (16) for repeated
samples, each drawn with replacement from the original data sample. This
yields new parameter estimates for each simulated sample, which are then
used to construct distance and shadow price values for the original data, thus
providing a known distribution of distance and shadow price estimates.

To explain, let θ̂ be the vector of parameter estimates that solve (16)
to give ~̂DO and p̂m for the original data, (x, y), where (x, y) constitutes a
random sample generated by an unknown process, F , the true DGP. With-
out knowing the true DGP, this approach instead uses an estimate of the
DGP, F̂ , based on the empirical distribution to generate S bootstrap sam-
ples, (x∗s, y

∗
s), s = 1, ..., S. For the sth iteration, each kth observation from

the original sample is drawn (with replacement) with probability 1
k
. This

results in a new pseudo feasible output set, P (x∗s). Applying (16) to (x∗s, y
∗
s)

then generates the vector of parameter estimates, θ̂∗s , which are used to com-
pute the bootstrapped directional output distance, ~DO

k

s for the original data,
(x, y). The bootstrapped directional output distance function is defined for
the sth iteration as

~DO

∗
s(x, y; gy) = max {β∗ : [y + β∗gy] ∈ P (x∗s)} , (21)

and the corresponding shadow price ratio for the mth and m′th attributes is
written as

p∗ms

p∗m′s
=

β∗ms
+

M∑
m′=1

β∗mm′s
ym′ +

N∑
n=1

M∑
m=1

γ∗nms
xn

β∗m′s +
M∑

m=1

β∗mm′s
ym +

N∑
n=1

M∑
m′=1

γ∗nm′sxn

. (22)

This approach raises one immediate concern. If a bootstrap data sample,
(x∗s, y

∗
s) does not include the observations lying on or near the frontier for the
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original data, then this approach could potentially render negative directional
distance values for the highest performing observations from the original data.
As a simple remedy, the proposed method discards any iteration that yields
a negative distance value5. The rationale follows from the fact that the
estimated frontier for the original data can never surpass the true frontier.
This biases the distance estimates downward, and retaining iterations that
omit the highest performing sites only furthers that downward bias.

As long as the empirical distribution adequately approximates the true
DGP, then the known bootstrapped distribution of parameter estimates should
closely resemble the true, but unknown, parameter distributions, so that

(θ̂∗ − θ̂)|F̂ ∼ (θ̂ − θ)|F (23)

Given (19), this approach uses the bootstrapped distance and shadow
price distributions to estimate the bias and standard error for the original
distance and shadow price estimates. Following Simar and Wilson (1998),
for each observation the original distance estimate bias,

biasF,k = EF ( ~̂Dk
O)− ~DO

k
(24)

is estimated using its bootstrap estimate

biasF̂ ,k = EF̂ ( ~DO

k∗

)− ~̂Dk
O, (25)

which is approximated by

ˆbiasF̂ ,k =
1

S

S∑
s=1

~DO

k∗

s − ~̂Dk
O = ~̄Dk∗

O − ~̂Dk
O. (26)

5In this empirical application, less than five percent of iterations were discarded due to
negative distance values.
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The bias-corrected distance estimate, ~̃Dk
O is defined as

~̃Dk
O = ~̂Dk

O − ˆbiasF̂ ,k = 2 ~̂Dk
O − ~̄Dk∗

O , (27)

and the estimated standard error of ~̂Dk
O is

ŝe =

[
1

S − 1

S∑
s=1

( ~DO

k∗

s − ~̄Dk∗

O )2

] 1
2

. (28)

A similar argument applies to the shadow price estimates.

5 Empirical Application

To illustrate the directional distance approach to shadow pricing, a set of
wetland hydrogeomorphic (HGM) indicator data is combined with agricul-
tural land values for the Nanticoke River watershed, which constitutes “one of
the most biologically important and wetland-rich watersheds in the [United
States] mid-Atlantic region(The Nature Conservancy, 1994; Whigham et al.,
2007).” Figure 3 depicts the watershed area6 for the Nanticoke river, which
flows into Chesapeake Bay, and drains roughly 283,000 ha in Maryland and
Delaware (Jacobs et al., 2010). The application in this study examines the
Delaware portion of the watershed. The HGM indicator data was originally
collected to asses wetland condition in the Nanticoke watershed7 as part of
the U.S. Environmental Protection Agency’s (EPA) Regional Environmental
Monitoring and Assessment Program (REMAP). The HGM data includes
both physical (e.g., drainage, sedimentation and floodplain conditions) and
biological (e.g., vegetation composition and density) indicators of condition
for riverine and flats wetland classes within the Nanticoke watershed. The
REMAP Nanticoke assessment collected more than 20 separate wetland in-

6The map source is Jacobs et al., 2007.
7For a detailed discussion of the wetland indicator data, refer to Whigham et al., 2007.
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dicators, which they then used to construct functional capacity index (FCI)
scores (ranging in value from 0 to 1) for a set of wetland functions. These
function scores serve as outputs in this application, and the directional out-
put distance function is used to estimate their respective shadow prices. The
functions (and their associated indicators) are:

i. Hydrology (sedimentation, drainage, and floodplain conditions)

ii. Biogeochemistry (topographic features, vegetation density and compo-
sition, Hydrology)

iii. Vegetation (vegetation density and composition, invasive species)

iv. Habitat (vegetation disturbance, coverage, and density, onsite stream
condition)

v. Buffer (surrounding vegetation and proximal stream condition)

These functions directly relate to many of the ecosystem services com-
monly attributed to wetlands. For instance, the hydrology function score
provides a measure of flood control capacity. The biogeochemistry function
score reflects the area’s water filtration potential. Vegetation condition con-
tributes to biodiversity and carbon sequestration. Riparian habitat supports
all manner of wildlife in the watershed, which fosters recreational hunting
and fishing benefits. The buffer function measures the surrounding wetland
condition, and may capture some of the scenic or aesthetic value of the wa-
tershed.

The biogeochemistry function is omitted from analysis, as it is constructed
as a linear combination of the hydrology function. The remaining functions
do not share individual indicators, i.e. the vegetation function uses a different
vegetation density indicator than the vegetation density indicator that is
used to construct the habitat function score. Table 1 describes the wetland
function scores, which range from 0.01 to 1 in order of improved condition,
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Figure 3: The Nanticoke watershed (hatched area)
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for 86 riverine (29 obs.) and flats (57 obs.) observations. In a related study
(Jacobs et al., 2010) the HGM indicators are also used to construct an overall
index of wetland condition (IWC) for riverine, flats and depression land class
areas within the Nanticoke watershed. The IWC (also listed in Table 1) can
range in value from 0 to 100, in order of improving condition, and in this
application ranges from 22 to 100.

The shadow pricing methodology outlined in the previous sections is ap-
plied to the wetland function scores, coupled with data on the value of agri-
cultural production in the watershed area to better understand the economic
value (in terms of opportunity cost) of these functions. Over half of all land
in the watershed is devoted to agricultural use, and farmers in the study
area use more than 80 percent of their land to produce corn, wheat and
soybean crops (USDA NRCS, 2007). To capture the potential value of agri-
cultural production in the watershed area, this study uses agricultural land
value, which in an efficient market should equal the discounted stream of
agricultural production value for a given parcel of land.

The application draws on agricultural land values from a data set com-
piled by the Delaware Agricultural Lands Preservation Program8. This pro-
gram has two stated goals: i.) to preserve a critical mass of crop land, forest
land, and open space to sustain Delaware’s agricultural industry, and ii.) to
provide landowners an opportunity to preserve their land in the face of in-
creasing development pressures and decreasing commodity values. Notably,
this is not a wetlands preservation program. Instead, the program seeks
to maintain land in agricultural production and to prevent commercial or
residential development on agricultural lands.

Landowner participation in the agricultural preservation program is vol-
untary and competitive. To join, a landowner or group of owners must first
form an Agricultural Preservation District, comprised of at least 200 con-

8For additional information, refer to the program website:
http://dda.delaware.gov/aglands/lndpres.shtml
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tiguous acres already devoted to agricultural activities. Landowners within
the district agree not to develop their land for at least 10 years and are com-
pensated with tax benefits and ‘right-to-farm’ protection (protection from
nuisance lawsuits filed by non-farming neighbors) for participating in the
program. More importantly, initial participation also qualifies the landowner
to apply for a permanent easement, or the sale of all future development
rights for their land. To date, agricultural landowners have formed over 500
preservation districts, containing roughly 130,000 acres. Half of this land,
approximately 65,000 acres, is protected by permanent development ease-
ments.

The program assesses both the fair-market value, which includes poten-
tial development value, and the agricultural value of lands enrolled in perma-
nent easement, and generally offers subsequent easement payments between
these two values. For the study area easement parcels, the average fair mar-
ket value, agricultural value, and easement payment are, respectively, $US
3,844/acre, $US 1,440/acre and $US 1,833/acre. The program does not re-
lease land value assessments, either fair market or agricultural, for land in
temporary easement, which limits the present analysis of agricultural value
to a set of 29 agricultural land parcels in permanent easement, averaging 149
tillable acres in size. This does, however, avoid multiple time horizons, as
well as the inclusion of possible future development value.

The agricultural land parcels with permanent development easements are
used to construct a spatially-weighted agricultural land value for each wet-
land observation site, based on the assessed agricultural values of the five clos-
est easement parcels. The study area is relatively small, and generally, these
agricultural parcels are quite close, averaging less than five miles from their
corresponding wetland observation sites. The resulting distance-weighted
agricultural value per acre for the kth observation, AV k, is
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AV k =

5∑
i=1

Distik × AVi
5∑

i=1

Distik

, (29)

where Distik is the Euclidean distance from the boundary of the ith easement
parcel to the kth wetland observation, and AVi is the assessed agricultural
value for easement parcel i. This results in an average agricultural value of $
US 1,572/acre9 for the wetland observation sites. Table 1 provides descriptive
statistics for the constructed agricultural values.

Table 1: Descriptive Statistics for the Nanticoke Data Set (86 Obs.)
Wetland Service Mean Std. Dev. Min. Max.

Hydrological Function 0.593 0.368 0.011 1.000
Vegetation Function 0.767 0.229 0.150 1.000
Habitat Function 0.659 0.252 0.100 1.000
Buffer Function 0.816 0.193 0.125 1.000

Agriculutral Value ($1,000/ acre) 1.572 0.391 1.078 3.725
Index of Wetland Condition (IWC) 72.017 19.492 22.417 99.833

The wetland function scores can range in value from 0.010 to 1.000, and
on average, each of the functions in the study area are roughly 0.60 or higher.
Given the relatively small number of observations, 29 classified as riverine
(primarily riparian and floodplain) and 57 classified as flats (primarily flood-
plain) 10, and the similarity of these two land classes, this study combines
the riverine and flats observations into one data set for estimation. Typi-
cally, observation sites in both classes have lower hydrological function and
higher buffer function values in the study area. The overall index of wetland
condition can range from 0 to 100, and is roughly 72.0 on average11. The

9All land values are represented in $US 2009.
10Refer to Brinson (1993) for HGM wetlands classification criteria.
11For construction of the IWC, refer to Jacobs et al. (2010).
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spatially-weighted agricultural land values on nearby farms average roughly
$1,572 per acre.

The application models each of the wetland function scores, along with
the value of agricultural production, as outputs that can be jointly produced
on land in the study area. For computational purposes, each of the observed
function scores and agricultural land values are divided by their respective
sample mean, so that ym = 1,m = 1, ..., 5 for a hypothetical observation
at the mean. This deflation ensures independence of unit of measurement
(Shephard, 1970), and corrects for differences in scale, due to the differences
in unit of measurement between the function scores and the agricultural land
values. The shared input in this application is land, normalized to one acre,
so that wetland function and agricultural land value are measured on the
scale of one acre of land. For estimation purposes, a constant input (in this
case, one acre of land) is equivalent to modeling production without inputs
(Lovell and Pastor, 1997). The resulting parameter values are listed in Table
2.

The bootstrap methods outlined in Section 3 are also applied to better
understand the sensitivity of these parameter values, as well as the distance
and shadow price estimates, to sample variation. Thus, each observation’s
distance is solved repeatedly, as explained in (21) for 500 samples drawn,
with replacement, from the original data set. This yields a distribution of
sample parameter values, along with a distribution of distance and shadow
price estimates for each observation. These distributions are then used to
compute the standard error for each parameter, distance, and shadow price
estimate, and to then correct those estimates for bias as outlined in Section
3. The standard errors and bias-corrected parameter values are listed in
Table 2. Table 3 reports the bias-corrected distance and shadow price ratio
estimates.

Given the mean weighting normalization employed for computation, the
distance value for a hypothetical observation at the mean can be interpreted
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as the percent increase in output value ykm required to reach the corresponding
frontier value yk∗m . This relationship is independent of unit of measurement,
and is written for each observation k as

ykm
ȳm

+ ~DO

k
=
yk∗m
ȳm

, (30)

which implies

ykm + ~DO

k
ȳ = yk∗m . (31)

Using this relationship, the results indicate that observations within the en-
tire sample can, on average, increase each of their metric levels by roughly 19
percent of the respective output mean. The hydrology function, for example,
has a mean value of 0.593. This means that on average, observations in the
sample could add 0.194× 0.593 = 0.115 to their hydrology function score.
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Table 2: Bootstrap Parameter Estimates
Coefficient Variable Deterministic Standard Error Bias-Corrected

α0 Constant 1.221 0.002 1.220
β1 y1 -0.230 0.009 -0.021
β2 y2 -0.320 0.041 -0.343
β3 y3 -0.037 0.014 -0.033
β4 y4 -0.536 0.029 -0.527
β5 y5 -0.084 0.018 -0.076
β11 y21 -0.009 0.004 -0.008
β21 y2y1 0.013 0.010 0.015
β22 y22 -0.159 0.037 -0.151
β31 y3y1 0.000 0.004 -0.001
β32 y3y2 -0.016 0.011 -0.022
β33 y23 -0.007 0.013 0.001
β41 y4y1 -0.005 0.009 -0.008
β42 y4y2 0.168 0.044 0.176
β43 y4y3 0.018 0.015 0.014
β44 y24 -0.182 0.068 -0.190
β51 y5y1 0.001 0.006 0.002
β52 y5y2 -0.006 0.036 -0.018
β53 y5y3 0.006 0.009 0.008
β54 y5y4 0.001 0.030 0.008
β55 y25 -0.002 0.011 0.000

For each wetland function, the shadow price ratio is equal to the ratio of
that function’s marginal performance to the marginal performance of agri-
cultural value, where marginal performance refers to each output’s marginal
contribution to reducing distance to the frontier. This ratio reflects the rel-
ative value of each wetland function to the value of agricultural output, at
each observation site. In this application, relative values may provide a more
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intuitive representation of the value of each of these functions. To explain,
the absolute shadow price, pm, for each function is computed from that func-
tion’s ratio of marginal performance to agricultural value (ym′). Given the
mean-weighting procedure employed for computation, this means that for a
given observation,

pm = pm′
∂ ~DO(x, y; gy)/∂ym

∂ ~DO(x, y; gy)/∂ym′

¯ym′

ȳm
, (32)

where ȳm refers to the sample mean for wetland function ym and ¯ym′ refers
to the sample mean agricultural value per acre. Agricultural land value is
measured in dollars per acre, so that pm′ , the value of an additional dollar
in value per acre, is equal to $1. Again, using the hydrology function as an
example, this translates on average to an absolute shadow price of $812, or
$81.24 for a 0.1 increase in hydrological function score. This illustrates a
second challenge to understanding the value of non-marketed environmental
attributes, such as wetland function. In addition to the lack of market price
information, there is often a lack of ‘market units’. This application values
the marginal increase in wetland function score. For this to be more tangible
in practice, it is important to consider the physical implications of that in-
crease in function score, to better understand the actual improvement being
valued. Table 6 presents the function shadow prices.

Table 3: Bias-Corrected Distance and Shadow Price Ratios* (86 Obs.)
Variable Mean Std. Dev. Min Max
Distance 0.194 0.173 -0.003 0.862

Hydrological Function 0.307 0.219 0.000 0.812
Vegetation Function 4.420 1.228 0.681 7.764
Habitat Function 0.428 0.144 0.000 0.661
Buffer Function 7.299 2.873 1.101 18.651

*Note, the shadow price ratios are relative to agricultural land value.
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A separate model also estimates the directional output distance function
and shadow price ratio, as above, for the overall index of wetland condition.
Recall, the IWC includes many of the same variables that are used to con-
struct the individual function scores, but is not simply a function (e.g. linear
combination, geometric mean, etc.) of the individual wetland function scores.
The same bootstrap procedure is applied. The IWC model parameter values
are listed in Table 4 and the distance and shadow price values are listed in
Table 5. The Spearman’s rank correlation between the IWC distance values
and those of the previous model is 0.71. These results suggest that on av-
erage, a hypothetical observation at the mean can increase its IWC by 37
percent, which translates to an IWC increase of 26.65. Because the second
order parameter values, β21 and β22 are zero, all observations have the same
shadow price ratio (see equation (19)) of 8.491. This also implies that each
of the observations has the same IWC shadow price of $185 for a 1 point
increase in IWC value.

Table 4: IWC Bootstrap Parameter Estimates
Coefficient Variable Deterministic Standard Error Bias-Corrected

α0 Constant 1.371 0.000 1.371
β1 y1 -0.894 0.000 -0.895
β2 y2 -0.105 0.000 -0.105
β11 y21 0.000 0.000 0.000
β21 y2y1 0.000 0.000 0.000
β22 y22 0.000 0.000 0.000

Table 5: Bias-Corrected Distance and IWC Shadow Price Ratio
Variable Mean Std. Dev. Min Max
Distance 0.371 0.246 0 1.008
IWC 8.491 0.000 8.491 8.491

31



Table 6: Bias-Corrected Shadow Prices
Variable Mean Std. Dev. Min Max

Hydrological Function 81.24 58.03 0.00 215.31
Vegetation Function 905.71 251.56 139.59 1,591.08
Habitat Function 102.14 34.46 0.00 157.60
Buffer Function 1,405.99 553.46 212.00 3,592.51

IWC 185.31 0.00 185.31 185.31

The absolute shadow prices12 for each of the wetland functions, as well as
the IWC are listed in Table 6. One can use these shadow prices to estimate
the value of improved wetland function for each observation, by valuing the
maximal expansion of wetland function. For instance, consider a hypothetical
observation with mean distance and shadow price values, which implies a
maximal expansion of roughly 19 percent for each function score. Again,
for the hydrological function, this translates to an increase in function score
of .115. The value of that increase in hydrological function on one acre,
using the mean shadow price, is $US 93.43 ($US 81.24 × 1.15). Given the
shadow prices for each of the wetland functions, a 19 percent increase in all
wetland functions translates to a value of $US 2,995/acre for this hypothetical
observation with mean distance and shadow price values. Applying this
approach to each observation in the watershed results in an average value of
$US3, 830/acre for maximal improved wetland function. Because the shadow
prices are functions of agricultural land value, which captures the discounted
stream of agricultural production value, this amount reflects the discounted
stream of function value, as opposed to annual value. Or, in other words, this
is the amount, in terms of foregone agricultural value, that could be sacrificed
to support the maximal increase in function value for each observation.

12Note the wetland function shadow prices represent the value of a 0.1 unit increase in
the corresponding function value. The IWC shadow price refers to a 1 unit increase in the
IWC value. Recall, each of the function scores can range from 0 to 1 and the IWC can
range from 0 to 100.

32



Turning to the IWC, recall that the distance results imply that a hypo-
thetical observation at the mean could increase its IWC value by 37 percent,
or 26.65 points. The estimated value of that increase, using the mean shadow
price, is roughly $US 4,939/acre. Applying this approach to observations in
the watershed results in an average value of $US 4,957/acre for maximal im-
proved wetland condition. This is higher, but not surprising given that the
IWC places more weight on some of the vegetation indicators that were used
to construct the higher-valued vegetation function13.

The average value for function improvement ($US 3,830/acre) exceeds
the average assessed agricultural value ($US 1,440/acre) and nearly equals
the average assessed market value ($US 3,844/acre) for land in the study
area. This suggests that the benefits of improving wetland function may
outweigh the value of agricultural production, and the average amount ($US
1,833/acre) spent to maintain land in agricultural production by the agri-
cultural preservation program, for many of the wetland sites in this study.
The average value for IWC improvement ( $US 4,957) outweighs the average
assessed market value for land in the study area, suggesting that for many
of the wetland sites in this study, the value of improved wetland condition
potentially outweighs development value. These estimated values are fairly
consistent with levels that are actually being spent to protect wetlands in
the area. The WRP Delaware permanent14 easement rates for 2009 are $US
2,900/acre for woodland and $US 4,000/acre for cropland (USDA, 2008), in
addition to 100 percent of wetlands restoration costs.

It is also important to consider how these prices compare to other esti-
mated wetlands values in the literature. In their meta-analysis of the litera-
ture, Brander et al. (2006) estimate an average annual value of roughly $US
1,134/acre, based on 80 reasonably comparable studies. There is, however,
no differentiation in their estimate for wetland type or quality.

13Refer to Jacobs et al., 2010 for further discussion of the IWC.
14The 30-year easement rate is 75 percent of permanent easement values.
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Despite the large number of existing wetlands valuation studies, relatively
few value wetland function. Within these, value estimates and application
settings range widely. Ragkos et al. (2006) connect a set of wetland func-
tions (e.g., groundwater recharge, floodwater retention, sediment retention)
for the Zazari-Cheimaditida wetland in Greece to various wetlands services
(e.g., irrigation water, flood control, fisheries), and then use contingent valu-
ation estimates for those services to value the corresponding functions. They
find that on average, individuals in the area are willing to pay 40-43 Eu-
ros (roughly $US 50-54) annually to maintain each of the wetland functions.
Acharya (2000) uses the production function approach (see Section 2) to
estimate a total value of $US 13,029 per day for hydrological recharge in
Nigeria’s Hadejia-Nguru wetlands. Using contingent valuation, Loomis et al.
(2000) estimate an annual willingness to pay of $US 19-70 million for the
restoration of ecosystem services in the South Platte river basin.

Finally, it is also important to consider how the tradeoffs between each
of the wetland functions and the potential value of agricultural production
change along the output frontier. To better understand the change in shadow
prices along the frontier, as the relative proportions of wetland function and
agricultural value (i.e., the output shares) change, the Morishima elastic-
ity of substitution (Blackorby and Russel, 1989), or in an output context,
transformation, is also estimated for each of the wetland functions. This
provides a measure of curvature for the frontier, and can be generalized to
the case of multiple (more than two) outputs. As opposed to pairwise Hicks
elasticities (Allen and Hicks, 1934), which hold all other outputs constant,
the Morishima elsasticity allows all output prices to simultaneously adjust
to a change in the output ratio, offering information on the optimal shadow
price ratios. Blackorby and Russel (1989) note that the Hicks elasticity can
only be used to determine the optimal output price ratio (in their case, in-
put shares) for the case of separable outputs (inputs), which would imply an
additive production function. The quadratic form of the directional output
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distance function specified in this study violates this separability condition.
The Morishima elasticity of transformation is defined as

Mmm′ =
∂ln( pm

pm′
)

∂ln(
ym′
ym

)
. (33)

Given the shadow price ratio for two outputs, (ym, ym′),

pm
pm′

=
∂ ~DO(x, y; gy)/∂ym

∂ ~DO(x, y; gy)/∂ym′
, (34)

and using the directional output distance function, the Morishima elasticity
can be estimated as

Mmm′ = y∗m′

[
∂ ~2DO(x, y; gy)/∂ym∂ym′

∂ ~DO(x, y; gy)/∂ym
− ∂2 ~DO(x, y; gy)/∂ym′∂ym′

∂ ~DO(x, y; gy)/∂ym′

]
, (35)

where y∗ = y + ~DO(x, y; gy). With the quadratic specification of the direc-
tional output distance function, and the empirical application, this simplifies
to

Mmm′ = y∗m′

 βmm′

βm +
M∑

m′=1

βmm′ym′

− βm′m′

βm′ +
M∑

m=1

βmm′ym

 . (36)

The properties of the directional output distance function, combined with
the specified quadratic form, determine the sign of the Morishima elasticity
(Färe et al., 2005). First, because the directional output distance function is
concave in y,

∂2 ~DO(x, y; gy)

∂ym∂ym
5 0, m = 1, ...,M,
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the parameter value βmm 5 0, m = 1, ...,M . In this application, the bias-
corrected value for β55 is actually equal to zero, removing that term from the
Morishima elasticity computation. Secondly, because the directional output
distance is monotonic decreasing in y, (i.e. higher functions scores reduce
distance to the frontier)

∂ ~DO(x, y; gy)

∂ym
5 0, m = 1, ...,M.

Together, concavity and monotonicity of the directional output distance func-
tion imply that for the quadratic form, the Morishima elasticity, Mmm′ will
take the opposite sign of βmm′ . The translation property lends additional
structure to the estimation of βmm′ , namely that

M∑
m′=1

βmm′gym′ = 0, m = 1, ...,M.

The unit direction vector then implies that

βmm′ = −
M∑

m′′=1

βmm′′ , m
′′ = 1, ...,M,m′′ 6= m′,

which makes the sign of MEmm′ ambiguous. For a negative MEmm′ , as
the magnitude, or absolute value of the elasticity increases, it becomes more
costly to increase ym, while for a positive MEmm′ , greater elasticity im-
plies that it is less costly to increase ym. Regardless of sign, the effect of a
change in the output shares on the shadow price ratio increases as MEmm′

becomes more elastic. Table 6 lists the resulting Morishima elasticity values,
constructed with the bias-corrected parameter and marginal performance es-
timates.
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Table 7: Bias-Corrected Morishima Elasticity Estimates
Variable Mean Std. Dev. Min Max
M15 -0.520 2.992 -26.991 -0.035
M25 0.066 0.066 0.022 0.573
M35 -0.362 0.473 -2.488 -0.091
M45 -0.017 0.011 -0.091 -0.007

In this application, the average elasticities are generally negative, and
inelastic, although some of the individual elasticities are highly elastic. This
indicates that the shadow price ratios may be somewhat unresponsive to
changes in the relative function and agricultural values. While typically quite
low in magnitude, the vegetation function elasticity is positive (the shadow
price ratio is still positive), which implies that as the share of agricultural
value increases, it may become (slightly) less costly to improve the vegetation
function.

6 Conclusion

This work extends the production frontier approach to valuation to the wet-
lands literature, by using the directional output distance function to derive
shadow price estimates for a set of wetland functions in the Nanticoke River
watershed. The estimation procedure adapts the bootstrap methods de-
veloped for nonparametric estimation to the quadratic directional output
distance function. The results suggest that the value of improved wetland
function outweighs the potential value of agricultural production for many
of the areas within the watershed. The average estimated value of improved
wetland function is also roughly in line with the permanent easement pay-
ments currently being offered by the WRP for the study area. In practice,
this approach could be used to target conservation and restoration funding,
by programs such as the WRP, to the wetland areas where improved condi-
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tion is most valuable.
There may be advantages to using the production frontier approach, as

opposed to other methods, to value wetlands in some circumstances. For
instance, when trying to value wetland function, explanation of the relevant
hydrological and biological processes may be overly complicated for survey-
based valuation methods. Alternatively, connecting these functions to their
associated ecosystem services, which may be easier to describe for contin-
gent valuation, requires quantification of the function-to-service link. The
hedonic property price methods used to value urban wetlands are not al-
ways easily transfered to rural areas, where observations are more dispersed.
While it may be possible to value some wetland functions, such as ground-
water recharge, as productive inputs, the input role of other functions, such
as vegetation coverage, may be less apparent.

That said, there are also limitations to the production frontier approach,
and more importantly, its application in this study. The output frontier is
used to value the tradeoffs between wetland function and agricultural pro-
duction. This measure of wetlands value reflects the opportunity cost of
foregone agricultural production, a private market value, and thus is likely
to underestimate the social value of wetlands. This limitation is not of course
unique to the production frontier approach, and can also downward-bias he-
donic and input value estimates. The assumptions made to characterize the
output set may not always be realistic. For instance, if different aspects of
wetland condition are closely related (in this application, the function scores
have relatively low correlation statistics) the free disposability assumption
may be inappropriate. Land serves as the only input in this application,
which ignores other possible inputs, such as agricultural inputs or conserva-
tion measures. This application could also be enhanced by a physical model
of the effects of agricultural practices (e.g., irrigation, tillage, chemical use)
on each of the wetland functions.

More generally, this work illustrates a way to link the data used for eco-
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logical assessment of wetlands to economic valuation. Ecological assessment
focuses largely on indicators of wetland function (such as the HGM indicators
included here), yet relatively few studies in the existing wetlands valuation
literature examine the value of wetland function, particularly with similar
ecological indicator data. Integrating the findings from both disciplines into
socially beneficial wetlands management policy requires bridging this discon-
nect.
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