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Appendix A. Quadratic perturbation 

 

 

Given our interpretation of ( )C s , defined as 

(A1) ( ) 1/ 2C ′ ′= + ×s h s s Hs  where N N∈ ×H ℝ ℝ  is positive definite, N∈h ℝ  and N
+∈s ℝ , 

the assumption stating its strict convexity in s is debatable. Cropping practices vary much 

more across crops than they vary across preceding crops for a given crop. Hence, it seems 

more sensible to define the acreage management cost as a function of the crop acreage vector 

≡a As , i.e. as 

(A2) ( ) 1 / 2aC ′ ′≡ + ×a h a a Ga  where K K∈ ×G ℝ ℝ  is positive definite, K∈g ℝ  and K
+∈a ℝ . 

Of course ( )aC As  is strictly convex in As  and convex in s, but it is not strictly convex in s. 

Our approach consists in defining ( )C s  as a strictly convex perturbed version of the “only” 

convex ( )aC As .  

The perturbation technique is a mathematical device which is often used in operation 

research for obtaining a well-behaved objective function smoothly approximating the 

objective function of interest. Linear or quadratic programming problems are usually 

perturbed by quadratic terms. In our case, ( )tC s  can be defined as 

(A3) 1( ) ( )a
t t t tC C ρ − ′≡ +s As s s  where 0ρ >  

by using the perturbation term 1 t tρ − ′s s . In this case we have 

(A4) 1ρ −′≡ + ⊗H A GA I I  

 and it is easily seen that H is positive definite as long as 0ρ > . This is so even if =G 0 , i.e. 

where the original version problem (S) is a linear programming problem. To choose the 

perturbation parameter ρ  as large as possible ensures that the computed solutions are reliable 

approximations to solutions of interest. 
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The perturbation term 1
t tρ − ′s s  is bounded as long as ts  is confined in a compact set. The 

feasible sets of the problems considered in the article are all compact. In that case, we know 

that C  uniformly converges to sC in ρ → +∞  on the considered compact set. This implies 

that the solutions obtained with C  converge in ρ → +∞  to solutions of the corresponding 

problems defined with sC . This ensures that the solutions to the perturbed versions of the 

problems of interest are ε − solutions to the problem of interest, i.e. that the solutions to the 

perturbed version of the problem of interest are reliable approximate solutions to the problem 

of interest. Of course, to choose of very large levels of ρ is innocuous in a theoretical 

analysis but this can generate ill-conditioning issues in practice. 
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Appendix B. Static problem 

 

 

This Appendix provides results related to the characterization of the static problem (S). We 

first recall the definitions of a polyhedron, of a polyhedral partition and of piecewise linear 

and piecewise quadratic functions which will be used later. 

 

Definition C1. Polyhedron 

N⊆ℝP  is a polyhedron of N
ℝ  if { : }N≡ ∈ ≤π Cπ cℝP  for some ( , ) C C N×∈ ×c C ℝ ℝ . 

 

Definition C2. Polyhedral partition. { : }j j ∈P J  is a polyhedral partition of the polyhedron 

N⊆ℝP  if (a) j j∈∪ =J P P , (b) jP  is a polyhedron such that j ⊆P P  for any j ∈J  and (c) 

int intj i∩ = ∅P P  for any ( , )i j ∈ ×J J . 

 

Definition C3. Piecewise affine and piecewise quadratic 

(i) Piecewise affine. : M→f ℝP  is piecewise affine π  on P  if there exists a polyhedral 

partition { : }j j ∈P J  of the polyhedron P  such that j ∈J  implies that ( ) j j= +f π b B π  for 

some ( , ) M M N
j j

×∈ ×b B ℝ ℝ . (ii) Piecewise quadratic. :f →ℝP  is piecewise quadratic in π  

on the polyhedron P  if there exists a polyhedral partition { : }j j ∈P J  of P  such that j ∈J  

implies that ( ) 1/ 2j j jh ′ ′= + + ×f π πh πH π  for some 1( , , ) N N N
j j jh + ×∈ ×h H ℝ ℝ .  

 

Proposition 1 in the main text is defined as Proposition B1 in this Appendix. 
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Proposition B1. Static problem 

Let consider problem (S): max ( ; )≥ Πs 0 s π  where ( ; ) ( )C′Π ≡ −s π s π s  and ( , ) N N
+∈ ×s π ℝ ℝ . 

Let assume that : NC + →ℝ ℝ  is quadratic and strictly convex in s on 
N
+ℝ . 

 (i) The solution in s to problem (S) is unique and defines the function :s N N
+→s ℝ ℝ  by 

( ) arg max ( ; )s
≥≡ Πs 0s π s π . ss  is continuous in π  on N

ℝ . 

(ii) The solution to problem (S) defines the value function :s NΠ →ℝ ℝ  by 

( ) max ( ; )s
≥Π ≡ Πs 0π s π . sΠ  is convex in π  

(iii) ss  is piecewise affine and sΠ  is piecewise quadratic in π  on N
ℝ . 

(iv)  sΠ  is continuously differentiable on Nℝ  with ( ) ( )s s∂
∂ Π =
π

π s π . 

(v) s
m ks  is strictly increasing in mkπ  at π  if ( ) 0s

mks >π . If s
m ks  is constant in mkπ  at π  then 

( ) 0s
mks =π . 

Let define the functions :s N
md +→ℝ ℝ  by ( )

s s
m md ′≡ ι s  for m ∈K  and :s N

ka +→ℝ ℝ  by 

s s
k ka ′≡ ι s  for k ∈K . Let K∈µ ℝ . 

(vi) Let k ∈K . s
ka  is strictly increasing in kµ  at + ⊗π µ ι  if ( ) 0s

ka + ⊗ >π µ ι . If s
ka  is 

constant in kµ  at + ⊗π µ ι  then ( ) 0s
ka + ⊗ =π µ ι . 

(vii) Let m ∈K . s
md  is strictly decreasing in mµ  at − ⊗π ι µ  if ( ) 0s

md − ⊗ >π ι µ . If s
md  is 

constant in mµ  at − ⊗π ι µ  then ( ) 0s
md − ⊗ =π ι µ . 

 

Proof. The objective function of problem (S) is quadratic and strictly concave. The feasible 

set of problem (S) is polyhedral and has a non-empty interior. Most of the results collected in 

Propositions B1 are either well-known or demonstrated in Bemporad et al (2002) and Lau and 

Womersley (2001).  
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The only results to be demonstrated are the continuous differentiability of sΠ  in π  on N
ℝ  

and results (v)-(vii). These last results are proven later. These results are given in Proposition 

C1 because they are given in Proposition 1 in the main text. 

The continuous differentiability of  sΠ  in π  on N
ℝ  is obtained by applying a result due to 

Jittorntrum (1984) (see also Theorems 4.1 and 7.3 in Fiacco and Kyparisis, 1985). This result 

implies that the value function of a constrained strictly concave parametric maximization 

problem in s with parametric convex constraints is continuously differentiable in its 

parameters at the parameter values if the Linear Independence Constraint Qualification 

(LICQ) condition holds and if the considered problem is sufficiently smooth. The LICQ 

condition holds at an optimum if the gradients in s of the constraint functions of the active 

constraints are linearly independent. In the case of problem (S), the only considered 

constraints are the non-negativity constraints ≥s 0 . The gradient is s of the corresponding 

active constraint functions is an identity matrix. As a result the LICQ condition holds at any 

solution to problem (S) and sΠ  is continuously differentiable in π  on N
ℝ . It is then easily 

shown that ( ) ( )s s∂
∂ Π =
π

π s π .  

Results (v)-(vii) are parts of Proposition B3 and their proofs are given in that of Proposition 

B3. It relies on the specific structure of problem (S), as the other results collected in 

Proposition B2. 

QED. 

 

Result (iii) implies that there exists a polyhedral partition { : }j j ∈P J  of P  such that there 

exists ( , ) M M N
j j

×∈ ×b B ℝ ℝ  such that: 

(B1) ( )s
j j= +s π b B π  and ( ) 1/ 2 ( ) ( )s

j j j j j j′ ′ ′Π = + + × + +π πb πB π b B π H b B π   
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if j∈π P  for any j ∈J . sΠ  is twice continuously differentiable almost everywhere in π  on 

P . sΠ  is twice continuously differentiable in π  on int jP  for  any j ∈J . sΠ  is 1C  π  on P  

but it is not twice continuously differentiable in π  on the set collecting the separating 

frontiers of the polyhedral partition { : }j j ∈P J . This last set has null Lebesgue measure. 

 

Results (v)-(vii) are parts of Proposition C3 and their proofs are given in that of Proposition 

B3. These results rely on the specific structure of Problem (S) which is investigated in more 

depth thanks to the results provided in Proposition B2. These results characterize the 

functional forms of ss  and of sΠ . They rely on the following definition the regime of s. 

 

Definition B1. Regimes 

The regime of s , denoted ( )r s , is characterized by the subset of ≡ ×N K K , ( )r sN , 

containing the pairs ( , )m k  such that 0mks > .  

 

 
Proposition B2. Functional forms and further properties of sΠ  and of ss  

Let assume that the regimes of the solutions in s to problem (S), i.e. the regimes of the terms 

( )ss π  with ∈π P  denoted by ( )sr π , can be characterized by R regimes defining the regime 

set {1,..., }R≡R .  

(i) Let define the Lagrangian problem associated to problem (S) as: 

(LS) min max { ( , ) }≥ ′Π +λ 0 s s π s λ  

where N∈π ℝ  and λ  is the LM vector associated to the non-negativity constraint ≥s 0 . The 

corresponding Karush-Kuhn-Tucker (KKT) conditions: 



8 
 

 
0 with  and 

− + − =
 ′ = ≥ ≥

π h λ Hs 0

λ s s 0 λ 0
 

characterize the unique solution in s and λ  to problem (LS), ( )ss π  and ( )sλ π . 

Let define rP  as a the dim r N×N  matrix selecting the subvector of s or of π  corresponding 

to the subset of indice pairs rN . Let define rZ  as a the ( dim )rN N− ×N  matrix selecting a 

the subvector of s or of π  corresponding to the subset of indice pairs rN \ N . 

(ii) If ( )sr r=π  then: 

( ) ( )s
r r r= −P s π G P π h  and ( ) ( )s

r r r= −Z λ π Z L π h , 

( ) ( )s
r r r
′= −s π P G P π h  and ( ) ( )s

r r r
′= −λ π Z Z L π h , 

where 1( )r r r
−′≡G P HP  and 1( )r r r r r N

−′ ′≡ −L HP P HP P I , and: 

( ) 1/ 2 ( ) ( )s
r r r

′ ′Π = × − −π π h P G P π h . 

(iii) The regime of the solution ( )ss π , ( )sr π , is characterized by: 

 
( )   ( )

( )
( )   ( ) .

s
r r rs

s
r r r

r r
 > ⇔ − >= ⇔ 

≥ ⇔ − ≥

P s π 0 G P π h 0
π

Z λ π 0 Z L π h 0
 

(iv) The functions ( )ss π  and ( )sλ π  are piecewise affine and the function ( )sΠ π  is piecewise 

quadratic in π  on N⊆ ℝP  according to the polyhedral partition { : }r r ∈P R  of P  defined by 

{ :  ( )  and ( ) }r r r r r≡ ∈ − ≥ − ≥π G P π h 0 Z L π h 0P P . 

(v) If ( )s ≠s π 0 , ( )sΠ π  is strictly convex in rP π  on rP  with: 

( )
( )

r

s
r r

∂
∂ Π =

P π
π G P π  for r∈π P , and 

2

( ) ( )
( )

r r

s
r

∂
′∂ ∂ Π =

P π P π
π G  for int r∈π P . 

 

Proof. Results (i) and (ii) are standard. The unicity of ( )ss π  and ( )sλ π  for any N∈π ℝ  

follows from the strict concavity Π  in s, the linearity the involved constraints and the linear 
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independence of the gradients in s of their corresponding constraints. The definitions of rP  

and rZ  ensures the equivalence of: 

( ) ( )s s− + − =π h λ π Hs π 0  

and of: 

 
( ) ( ) ( )

( ) ( ) ( )

s s
r r rr r r r

s s
r r r rr r r

  ′ ′  −   
+ − =      ′ ′−          

P π h P λ π P s πP HP P HZ
0

Z HP Z HZZ π h Z λ π Z s π
. 

With ( )sr r=π , the definitions of rP  and rZ  and the complementarity condition, i.e. 

( ) ( ) 0s s′ =λ π s π , ( )s ≥s π 0  and ( )s ≥λ π 0 ,  provide: 

 
( )

( )

s
r r r r r r

s
r r r rr r

′ ′      
+ − =      ′ ′      

0P π P QP P HZ P s π
0

Z QP Z HZZ π Z λ π 0
. 

Some manipulations yield: 

 
1

1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

s
r r r r r r

s
r r r r r r r r r

−

−

′ = − = −


′ ′= − − − = −

P s π P HP P π h G P π h

Z λ π Z HP P HP P π h Z π h Z L π h
 

the second equalities using 1( )r r r
−′≡G P HP  and 1( )r r r r r N

−′ ′≡ −L HP P HP P I . The matrix  

r r′P HP  is positive definite because H  is definite positive and rP  has full row rank.  This in 

turn ensures that r r′P HP  is invertible and that its inverse, rG , is also positive definite. The 

formula of  ( )sΠ π  is then obtained by substitution with: 

( ) ( ( ); ) ( ) ( ) 1/ 2 ( ) ( ) ( )s s s s s
r r r r r′ ′ ′ ′Π = Π = − − ×π s π π π h P s π s π P P HP P s π . 

Result (iii) follows from the definition of the regimes and from the KKT conditions 

uniquely characterizing ( )ss π  and ( )sλ π  for any N∈ ⊆π ℝP . If ( )sr r=π  then the KKT 

conditions necessarily provide: 

 
( ) ( )  

( ) ( ) .

s
r r r

s
r r r

 = − >


= − ≥

P s π G P π h 0

Z λ π Z L π h 0
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This condition set must also hold if the KKT conditions imply that ( )sr r=π . This implies 

that his condition set is equivalent to ( )sr r=π , provided that the KKT must hold for ( )ss π  

and ( )sλ π  to be optimal. 

Result (iv) follows from the assumption that the regime set R  exhausts all possible regimes 

and from results (i)-(iii). The definition of rP  shows that it is a polyhedron inN
ℝ . Result (v) 

follows from results (ii) and (iv). It then suffices to note that rG  is positive definite and that 

rP  has full row rank. 

QED. 

 

 
The inequality ( )s

r ≥Z λ π 0  being equivalent to ( )r r r r r r′≤ +Z π Z HP G P π L h , the term  

(CB2) ( ) ( )( )s
r r r r r r r′≡ +z P π Z HP G P π L h  

can be interpreted as the reservation gross margin vector of the crop sequences rN \ N  in 

regime r. This follows from the fact that ( )s
r r r≤Z p z P π  and r r=P p P π  imply ( ) ( )s s=s p s π  

and, in particular, ( ) ( )s s
r r= =Z s p Z s π 0 . Such reservation “prices” play an important role in 

the econometrics of the demand systems with corner solutions. 

 

Proposition B3 provides results related to the sensitivity analysis of ss  with respect to π . 

 
 
Proposition B3. Kinks of ( )ss π , of ( )sDs π  and of ( )sAs π  

Let consider the terms ( )ss π  and ( )sλ π  defined in Proposition B1 with N∈π ℝ . Let define 

u
ℓ
 as the N dimensional column vector with null elements with the exception of the th

ℓ  one 
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which is unitary. Let define v
ℓ
 as the K dimensional column vector with null elements with 

the exception of the thℓ  one which is unitary. 

(i) Let mkη ∈ℝ . If ( ) 0s
mks =π  then ( 1)( ) 0s

mk mk K k ms η × − ++ × =π u  for 0mkη ≤ . ( )s
mks π  is strictly 

increasing in mkπ  if ( ) 0s
mks >π  or if ( ) 0 ( )s s

mk mks λ= =π π .  

(ii) Let mµ ∈ℝ . ( )( ) ( )s s
m m m m md µ µ′≡ − × ⊗ι s π ι v  is strictly decreasing in mµ  if ( ) 0s

m md µ > . If 

(0) 0s
md =  then ( ) 0s

m md µ =  for 0mµ ≥ . 

(iii) Let kµ ∈ℝ . ( ) ( )s s
k k k k ka µ µ′≡ + × ⊗ι s π v ι  is strictly increasing in kµ  if ( ) 0s

k ka µ >  or if 

( ) 0 ( )s s
k k mk k ka µ λ µ= = + × ⊗π u ι  for some m∈K . If ( ) 0s

mkλ >π  for m∈K  then 

( ) 0s
k ka µ =  for 0mµ ≤ . 

 

Proof. The proof of this proposition mainly relies on results (ii) and (v) of Proposition B2. 

First note that ( )s
r ≥Z λ π 0  is equivalent to: 

( )( )r r r r r r′≤ +Z π Z HP G P π L h . 

This implies that if ( )sr r=π  then ( )s
rr r′+ =π Z p  for any dim rN−

+∈p ℝ
N  and, as a result, this 

implies the second parts of results (i)-(iii) of Proposition C3. 

Provided that ( ) ( )s
r r r r r= − +P s π G P h G P π  if ( )sr r=π  and that rG  is positive definite we 

know that ( )s
mks π  is strictly increasing in mkπ  if ( ) 0s

mks >π . If a frontier of rP  a point π  such 

that ( ) 0 ( )s s
mk mks λ= =π π , then any increase in mkπ  brings the considered point in int rP  where 

( )s
mks π  is strictly increasing in mkπ . This implies that ( )s

mks π  is also strictly increasing in mkπ  

if ( ) 0 ( )s s
mk mks λ= =π π . 

By the definition of ( )s
m md µ  we have ( ) ( ) ( )s s

m m m m md µ µ= ⊗ − × ⊗ι v s π ι v , and with 

( )sr r=π  and ( ) ( )s
r r r
′= −s π P G P π h , we obtain:  
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( ) ( ) ( ) ( ) ( )s
m m m r r r m m r r r md µ µ′ ′= ⊗ − − × ⊗ ⊗ι v P G P π h ι v P G P ι v  

or ( ) (0) ( ) ( ).s s
m m m m m r r r md dµ µ ′= − × ⊗ ⊗ι v P G P ι v  Since rG  is positive definite, ( )s

m md µ  is 

strictly increasing in mµ  if and only if ( )r m⊗ ≠P ι v 0 . It is easily shown that ( )r m⊗ ≠P ι v 0  if 

and only if ( ) 0s
mks >π  for some k ∈K , i.e. if and only if ( )( ) ( ) 0s s

m m m m md µ µ′= − × ⊗ >ι s π ι v . 

The first part of result (iii) can be demonstrated by using a similar approach. 

QED. 
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Appendix C. Myopic problem 

 

 

This Appendix provides results related to the characterization of the myopic problem (M). 

Proposition 2 in the main text is defined as Proposition C1 in this Appendix.  

 

Proposition C1. Myopic problem 

Let consider the problem max { ( ; ) s.t. }≥ Πs 0 s π Ds = a  under the assumptions defined in 

Proposition B1. Let further assume that { : 0}K
+ ′∈ ≡ ∈ >a a ι aℝA .  

(i) The solution in s to problem (M) is unique and defines the function :m N N
+× →s ℝ ℝA  by 

( , ) arg max { ( ; ) s.t. }m
≥≡ Πs 0s π a s π Ds = a . ms  is continuous in ( , )π a  on N ×ℝ A . 

(ii) The solution to problem (M) defines the value function :m NΠ × →ℝ ℝA  by 

( , ) max { ( ; ) s.t. }m
≥Π ≡ Πs 0π a s π Ds = a . mΠ  is convex in π  and concave in a on N ×ℝ A .  

(iii) ms  is piecewise affine and mΠ  is piecewise quadratic in ( , )π a  on N ×ℝ A . 

(iv)  mΠ  is continuously differentiable in ( , )π a  on N ×ℝ A  with ( , ) ( , )m m∂
∂ Π =
π

π a s π a  and 

( , ) ( , )m m∂
∂≡ Π

a
µ π a π a . 

Let define the Lagrangian problem associated to problem (M) as: 

(LM) ,min max { ( ; ) ( )}≥ ′ ′Π + + −
µ λ 0 s s π s λ µ a Ds  

and let ( , )m π aM  denote the set of solutions in µ  to problem (LM). 

(v) ( ) ( , )s m′− =s π D µ s π a  and ( ) ( , )s m′ ′Π − + = Ππ D µ µ a π a  if and only if ( , )m∈µ π aM . 

(vi) ( , ) arg min { ( ) }K

m s

∈
′ ′= Π − +

µ
π a π D µ µ a

ℝ
M  and ( , ) { : ( ) }m K s ′= ∈ − =π a µ Ds π D µ aℝM . 
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(vii) Let define the sets ( , ) { : ( , )}m m
n nµ≡ ∈ ∈π a µ π aℝM M  for n ∈K . There exists a 

function :m N K× →µ ℝ ℝA  such that: 

(a) ( , ) { ( , )}m m
n nµ≡π a π aM  if 0na > .  

(b) ( , ) [ ( , ), )m m
n nµ≡ +∞π a π aM  if 0na = . 

(c) ( , ) ( , )m m∂
∂ Π =
a

π a µ π a  for any ( , ) N∈ ×π a ℝ A . 

(d) m
µ  is continuous in ( , )π a  on N ×ℝ A . 

 

Proof. The results collected in (i)-(iii) are either well-known or demonstrated in Bemporad et 

al (2002). Result (iv), stating that mΠ  is continuously differentiable in ( , )π a  on N ×ℝ A , is to 

be demonstrated together with result (vii). The result stating that mΠ  is continuously 

differentiable in a  on N ×ℝ A  relies on a specific approach. Note that the results collected in 

Proposition C2, which is given below, are closely linked to result (vii). 

 

The proof of results (v) and (vi) rely on the functional form of the Lagrangian problem (LM) 

associated to problem (M) and on the links of problems (LM) and (S). Let first remark that the 

Lagrangian function associated to problem (M) satisfies: 

( ; ) ( ) ( ; )′ ′ ′ ′ ′Π + + − = Π − + +s π λ s µ a Ds s π D µ λ s µ a . 

The term λ  is the Lagrange multiplier vector associated to the non-negativity constraint ≥s 0  

and µ  is the Lagrange multiplier vector associated to the crop rotation constraint Ds = a . 

Result (v) then makes uses of the fact that problem (LM) can be decomposed as: 

 min {min {max ( ; ) } }≥ ′ ′Π − ⊗ + +
µ λ 0 s s π ι µ λ s µ a . 

The KKT conditions associated to this Lagrangian problem, i.e. 
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0 with  and 

− + − ⊗ − =
 − =
 ′ = ≥ ≥

π h λ ι µ Hs 0

Ds a 0

λ s s 0 λ 0
, 

characterize the solutions in ( , , )s λ µ  to this problem. Problem (LM) is also equivalent to the 

following modified Lagrangian problem 

 min {max ( ; ) }≥ ′Π − ⊗ +
µ s 0 s π ι µ µ a  

and, by using Proposition B1, to the following dual problem: 

min { ( ) }s ′Π − ⊗ +µ π ι µ µ a . 

This allows rewriting the KKT conditions of Problem (LM) as: 

( , ) ( )

( )

m s

s

 = − ⊗


− ⊗ =

s π a s π ι µ

Ds π ι µ a
 

provided that λ  is the optimal LM vector of the non-negativity constraints of Lagrangian 

problem associated to the static problem max ( ; )≥ Π − ⊗s 0 s π ι µ . These equivalences provide 

results (v) and (vi). 

 

Before proving results (iv) and (vii) let consider the case where 0na >  for n∈K . With 

0na >  for n∈K  implies that the (linear) constraints involved in problem (M) which are 

active at the optimum cannot be redundant, i.e. are linearly independent. The condition 0na >  

ensures that ( , ) 0m
nks >π a  for some k ∈K  and, as a result, implies that the non-negativity 

constraint 0nks ≥  is (strongly) inactive. Hence the condition stating that 0na >  for n∈K  

that the LICQ condition holds for any solution to problem (LM). The objective function of 

this maximization problem being strictly concave and twice continuously differentiable, and 

its constraints being linear, the results due to Jittorntrum (1984) reported as Theorems 4.1 and 
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7.3 in Fiacco and Kyparisis (1985) is applicable. These results give that mΠ  is continuously 

differentiable in ( , )π a  on N +×ℝ A  where { | 0}K+
++ ′≡ ∈ >a a ιℝA . 

If 0na =  for some n∈K  or if +∈a A\ A , the LICQ condition doesn’t hold for the 

solutions to problem (LM), implying multiple solutions in elements of the Lagrange 

multiplier vectors λ  and µ . If 0na =  then the crop rotation constraint ( )m na′ =ι s  and the non-

negativity constraint ( )m ≥s 0  imply ( )m =s 0 , i.e. the constraint ( )m ≥s 0  is active and 

redundant with ( )m na′ =ι s  at the optimum of problems (M) and (LM). 

We do not proceed by eliminating redundant constraints because this approach is not well 

suited for dealing with dynamic programming problems. We use results due to Berkelaar et al 

(1997). These authors investigated the differentiability properties of the value function of 

general quadratic programming problems.  

 

When applied to mΠ  for derivatives in π  Theorem 58 of Berkelaar et al (1997) provides:  

 , ,( , ) min {  s.t. ( , , ) ( , )}
n

m
ns

π +
∂

∂
Π = ∈s µ λπ a s µ λ π aL  

and: 

, ,( , ) max {  s.t. ( , , ) ( , )}
n

m
ns

π −
∂

∂
Π = ∈s µ λπ a s µ λ π aL  

where ( , )π aL  is the subset of 2N K
+ ×ℝ ℝ  containing the solutions in ( , , )s λ µ  to the KKT 

conditions. Provided that ( , )ms π a  is the unique solution in s to problem (M) we have: 

( , ) ( , ) ( , ) ( , )
nn n

m m m m
ns ππ π− +

∂ ∂ ∂
∂∂ ∂

Π = Π = = Ππ a π a π a π a , 

i.e. mΠ  is differentiable in π  on N ×ℝ A . Given that ( , )ms π a  is continuous in π  on N ×ℝ A , 

mΠ  is continuously differentiable in π  on N ×ℝ A . 

When applied to mΠ  for derivatives in na  Theorem 50 of Berkelaar et al (1997) yields: 
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 , ,( , ) min {  s.t. ( , , ) ( , )}
n

m
na

µ+
∂

∂
Π = ∈s µ λπ a s µ λ π aL  

and: 

, ,( , ) max {  s.t. ( , , ) ( , )}
n

m
na

µ−
∂

∂
Π = ∈s µ λπ a s µ λ π aL . 

These results can be further specialized by using the uniqueness of the solution in s to 

problem (M). We have ( , ) { ( , )} ( , )m= ×π a s π a π aL Q  and the first equation of the KKT 

condition system, i.e. ( , )m+ − ⊗ = +π λ ι µ h Hs π a , ensures that the difference − ⊗λ ι µ  is 

also unique for any ( , ) ( , )∈λ µ π aQ . With ( , ) ( , )m m≡ − −η π a π h Hs π a  we have 

( , )m⊗ − =ι µ λ η π a  if and only if ( , ) ( , )∈λ µ π aQ . Note also that :m N N× →η ℝ ℝA  is 

continuous in ( , )π a  on N ×ℝ A  by the continuity of ms . Let use the upper index “m” for 

indicating an element of ( , )π aQ , i.e. ( , ) ( , )m m ∈λ µ π aQ  and ( , )m m m⊗ − =ι µ λ η π a . “Fixing” 

the value of s at ( , )ms π a  in the KKT condition system we obtain: 

 
( )( , ) ( )( , ) min {  s.t. ( , ) ( , )}

n nn

m
n n n na µ µ µ+

∂
∂

Π = ∈λπ a λ π aQ  

and: 

( )( , ) ( )( , ) max {  s.t. ( , ) ( , )}
n nn

m
n n n na µ µ µ−

∂
∂

Π = ∈λπ a λ π aQ  

where: 

( )

( , ),  ( , ) 0 and 0
( , ) ( , )  s.t. 

for  

m m
K n nk nk nk nk nk

n n n

s

k

µ λ η λ λµ +

 − = = ≥ ≡ ∈ × 
∈  

π a π a
π a λ ℝ ℝQ

K
. 

For later use let define the term ( , ) max{ ( , ) : }m m
n nk kη η≡ ∈π a π a K . Given that mη  is 

continuous in ( , )π a  on N ×ℝ A , max{ : }m m
n nk kη η≡ ∈K  is also continuous in ( , )π a  on 

N ×ℝ A . 

Two cases occur for ( )
m
nλ  and m

nµ , depending on whether 0na >  or 0na = .  
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If 0na >  then there exists ∈ℓ K  such that ( , ) 0m
ns >π a
ℓ . This implies that 0m

nλ =
ℓ  and, as a 

result, that ( , )m m
n nµ η= π a

ℓ . Hence the solution in nµ  to problem (LM) is unique if 0na > . Let 

denote this solution by ( , )m
nµ π a . This implies that: 

( , ) ( , ) ( , ) ( , )
nn n

m m m m
naa a

µ− +
∂ ∂ ∂

∂∂ ∂
Π = Π = Π =π a π a π a π a  if 0na > . 

Provided that 0m
nλ =
ℓ  if and only if ( , ) ( , )m m

n nµ η=π a π a
ℓ , we also have ( , ) ( , )m m

n nµ η=π a π a , 

i.e.: 

( , ) ( , ) ( , )
n

m m m
n na

µ η∂
∂ Π = =π a π a π a  if 0na > . 

 

If 0na =  then ( , )m
n =s π a 0  and, ( )

m
nλ  and m

nµ  are not uniquely characterized by the KKT 

conditions. But ( )
m
n ≥λ 0  implies that ( , )m m

n nkµ η≥ π a  for any k ∈K , i.e. that m
nµ  is bounded 

from below with: 

( )( , ) ( )min {  s.t. ( , ) ( , )} min{ } max{ ( , ) : } ( , )
n n

m m m
n n n n n nk nkµ µ µ µ η η∈ = = ∈ =

λ
λ π a π a π aKQ . 

As a result we have: 

( , ) ( , ) ( , )
n

m m m
n na

µ η+
∂

∂
Π = =π a π a π a  if 0na = . 

 

Provided that ( , ) ( , )m m
n nµ η=π a π a  is continuous in ( , )π a  on N ×ℝ A  we have: 

( , ) ( , ) ( , )
n

m m m
n na

η µ∂
∂ Π = =π a π a π a  for any 0na ≥  

and it follows that ( , )mΠ π a  is continuously differentiable in ( , )π a  on N ×ℝ A . 

QED. 
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The intuition of this result is as follows. The term ( , )m
nη π a  allows the identification of the 

( , )n k  pairs for which 0na =  is the least constraining. Basically, to make available an 

infinitesimal acreage preceding crop n, 0nε > , implies that the optimal choice of nks  remains 

null for any crop k ∈K  such that ( , ) ( , )m m
nk nη η<π a π a  while that of ns

ℓ
 becomes strictly 

positive for any crop ∈ℓ K  such that ( , ) ( , )m m
n nη η=π a π a
ℓ . With 

( , ) ( , ) ( , )
n

m m m
n n a

µ η ∂
∂= = Ππ a π a π a , 

( , )m
nµ π a  is the maximum renting price that the considered farmer would pay for increasing 

his acreage of land with preceding crop n when such land is unavailable on his farm. 

 

Proposition C2. Constrained myopic problem 

Let assume that ( )+ ⊂aK K  and let consider the “constrained myopic” problem: 

(C)  0
( ) ( )max { ( ; ) s.t.  for ( ) and  for ( )}n n na n n+

≥ ′Π = ∈ = ∈s 0 s π ι s a s 0 aK K  

under the assumptions collected in Proposition C1. Let consider the corresponding 

Lagrangian problem: 

(LC)  ( ){ }0 0
( )

( )

( ) ( ) ( ) ( ) ( ), ( ) ( ) ( )
, , ( )

min max ( ; ) ( )
n

n n

n n n n n n nn n n

n

a
µ

µ+

+
∈ ∈ ∈

≥ ∈

′ ′ ′Π + + − −∑ ∑sη a a a
λ 0 a

s π λ s ι s η s
K K K

K

. 

 (i) The solutions in s, ( )nη  for 0( )n ∈ aK , nµ  and ( )nλ  for ( )n +∈ aK  to problem (LC) are 

unique. They define the functions ( , )cs π a , ( ) ( , )c
nη π a  for 0( )n ∈ aK , ( , )c

nµ π a  and ( ) ( , )c
nλ π a  

for ( )n +∈ aK .  

Let denote the value function of problem (C) by ( , )cΠ π a . We have: 

(ii) ( , ) ( , ) ( , )c c m∂
∂ Π = =
π

π a s π a s π a . 

(iii) ( , ) ( , ) ( , )
n

c c m
n na

µ µ∂
∂ Π = =π a π a π a  and ( ) ( )( , ) ( , )c m

n n=λ π a λ π a  if ( )n +∈ aK . 
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(iv) ( ) ( )( , )c m m
n n nµ= × −η π a ι λ  where ( )( , )m m

n nµλ  is any solution in ( )( , )n nµλ  to problem (LM) if 

0( )n ∈ aK . 

 (v) ( , ) ( , ) max{ ( , ) : }m c c
n n nk kµ η η= ≡ ∈π a π a π a K  for 0( )n ∈ aK . 

 

Proof. Problem (C) is a quadratic programming problem with non redundant linear 

constraints. Its solution in s are unique and its KKT conditions uniquely characterize the 

optimal Lagrange multiplier vectors ( ) ( , )c
nη π a  for 0( )n ∈ aK  on the one hand and, ( , )c

nµ π a  

and ( ) ( , )c
nλ π a  for ( )n +∈ aK  on the other hand. This provides result (i). The KKT conditions 

of problem (C) are identical to those of problem (M) as soon as we consider 

( ) ( )( , )m m m
n n nµ≡ × −η π a ι λ  instead of both m

nµ  and ( )
m
nλ  for 0( )n ∈ aK . This provides results (ii)-

(iv). Result (v) is obtained by using the definition of ( , )m
nµ π a  in Proposition C1. 

QED.  

 

 

These results related to cases where some previous crop(s) is(are) unavailable on the farm can 

be summarized by considering problems equivalent to problem (M). Let assume that  

and let consider the maximization problem equivalent to problem (M) obtained by replacing 

the constraints  and  by the constraint . The optimal Lagrange 

multiplier vector associated to this equality constraint, ,  is 

unique and allows characterizing  with  where 

. This result has two main implications. First, it implies that 

 is easily computed by enforcing the constraint  for  such that  

in problem (M). However, if this approach is convenient for solving myopic problems, it is 

0na =

( )n ≥s 0 ( )n na′ =ι s ( )n =s 0

( ) ( , ) ( ( , ) : )n nk kη≡ ∈η π a π a K

( , )m
nµ π a ( , ) ( , )m

n nµ η=π a π a

( , ) max{ ( , ) : }n nk kη η≡ ∈π a π a K

( , )m
nµ π a ( )n =s 0 n∈K 0na =
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much less relevant for characterizing the solutions to dynamic acreage choice problems. 

Second, this result is insightful for analyzing the mechanisms lying at the root of the 

characterization of . The equality  states that he marginal effect 

of an increase in  from 0 on , i.e. , is equal to the optimal Lagrange 

multiplier associated to the least constrained crops when the constraints  are imposed 

for , i.e. . Let assume that the farmer obtains a very small acreage with 

preceding crop n. His optimal choice consists in devoting this acreage to the crop sequence(s)  

 for  such that .  is positive if it is profitable for the 

farmer to grow crop(s)  after crop n.  is negative if the farmer would be forced to 

grow crop(s)  after crop n, i.e. if the farmer would not rent any acreage with preceding crop 

n. 

 

  

( , )m
nµ π a ( , ) ( , )m

n nµ η=π a π a

na ( , )mΠ π a ( , )m
nµ π a

0nks =

k ∈K ( , )nη π a

( , )n ℓ ∈ℓ K ( , ) ( , )n nη η=π a π a
ℓ

( , )nη π a

ℓ ( , )nη π a

ℓ
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Appendix D. Dynamic problem 

 

 

This Appendix provides results related to the characterization of the dynamic problem (D). 

Proposition 2 in the main text is defined as Proposition D1 in this Appendix. It characterizes 

the solutions to the dynamic programming problem considered in the article by adopting a 

stochastic programming approach, i.e. by directly solving the dynamic problem as a large 

static problem while taking advantage of its multistage structure. 

Proposition D2 provides additional results by adopting a dynamic programming approach, 

i.e. by relying on Bellman’s dynamic programming principle. Proposition D3 provides 

detailed results on the differentiability properties of the value functions of the considered 

dynamic problem. 

 

Proposition D1. Dynamic problem, stochastic programming approach 

Let define the vector of contingent acreage choices as ( )( : 1,..., )t t T≡ =s s  with 

( ) ( )( : )t t t tω ω≡ ∈s s W  for 1,...,t T=  and let define the support point vector of the crop gross 

margin vector as ( )( : 1,..., )t t T≡ =π π  with ( ) |( : )
tt t t tω ω≡ ∈π π W  for 1,...,t T= . 

Let consider problem (Dd): 
0

1
( ) |1

max ( ; )
t t tt t

T t
tt

pω ω ωω
β −

∈ = ∈
Π∑ ∑s a s πF W

 where the feasible set 

0( )aF  is defined as: 

1 10 0 1 1 1( ) { :  and  for ( ),  , 2,..., }
t t

NW
t t t t t t Tω ω ω ω ω ω

−+ − − −≡ ∈ = = ∈ ∈ =a s Ds a Ds AsℝF W W  

under the assumptions stated in Propositions B1 and C1.  

(i) The solution in s to problem (Dd) is unique. Let 0( , )os π a  denote this solution with 

0 ( ) 0( , ) ( ( , ) : 1,..., )o o
t t T≡ =s π a s π a  and ( ) 0 0( , ) ( ( , ) : )

t

o o
t t tω ω≡ ∈s π a s π a W . 
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(ii) The function :o NW NW
+× →s ℝ ℝA  defined by the solution in s to problem (Dd)  

0

1
0 ( ) |1

( , ) arg max ( ; )
t t tt t

To t
tt

pω ω ωω
β −

∈ = ∈
≡ Π∑ ∑s as π a s πF W

 is piecewise affine and 

continuous in 0( , )π a  on NW ×ℝ A . 

(iii) The value function 
1
:o NW NWVω × →ℝ ℝA  of problem (Dd)  defined by 

1 0

1
0 ( ) |1

( , ) max ( ; )
t t tt t

To t
tt

V pω ω ω ωω
β −

∈ = ∈
≡ Π∑ ∑s aπ a s πF W

 is piecewise quadratic and 

continuous in 0( , )π a  on NW ×ℝ A . 
1

oVω  is convex in π  and concave in 0a  on NW ×ℝ A . 

Let KW∈µ ℝ  denote a vector with the structure of s, i.e. ( )( : 1,..., )t t T≡ =µ µ  with 

( ) ( : )
tt t tω ω≡ ∈µ µ W . Let define the term 1| tt ω+µ  by 

1 11 1
1| |( )t t t tt t t

t pω ω ω ωω ω + ++ +
+ ∈

≡∑µ µ
W

  with the 

convention 
1Tω +

≡µ 0 . 

(iv)  To solve problem (Dd) is equivalent to solve the following dual problem: 

(DDd)   { }1

1
| 1| 01

min ( )
t t t tt t

T t s
t tt

pω ω ω ω ωω
β β−

+= ∈
′ ′ ′Π − + +∑ ∑µ π D µ A µ µ a

W
 

with: 

0 | 1|( , ) ( )
t t t t

o s
t tω ω ω ωβ +′ ′= − +s π a s π Dµ Aµ  for t tω ∈W  and 1,...,t T=  

for any  where  is the solution set in  to problem (DDd), i.e.: 

. 

(v) 
1 0( , )o

ω∈µ π aM  if and only if µ  is a solution to equation system: 

1 1 1

1 1 1

1| 2| 0

| 1| 1| |

1 1 1

( )

( ) ( )

for , ( ) and 2,..., .
t t t t t t

s

s s
t t t t

t t t t t t T

ω ω ω

ω ω ω ω ω ω

β

β β
ω ω ω

− − −+ −

− − −

′ ′ − + =
 ′ ′ ′ ′− + = − +
 ∈ ∈ =

Ds π D µ A µ a

Ds π D µ A µ As π D µ A µ

W W

 

(vi)  
1

oVω  is continuously differentiable in π  on NW ×ℝ A  with 
1 0 0( , ) ( , )o oVω

∂
∂ =
π

π a s π a . 

1 0( , )o
ω∈µ π aM

1 0( , )o
ω π aM

{ }1 1

1
0 | 1| 01

( , ) argmin ( )
t t t tt t

To t s
t tt

pω ω ω ω ω ωω
β β−

+= ∈
′ ′ ′≡ Π − + +∑ ∑µπ a π Dµ Aµ µ a

W
M
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(vii) 
1

oVω  is continuously differentiable in 0a  on NW ×ℝ A . I.e., there exists a function 

1 1 0: ( , )o NW o
ω ω× →µ π aℝ A M , continuous in 0a  on NW ×ℝ A , with 

1 10
0 0( , ) ( , )o oVω ω

∂
∂ =
a

π a µ π a . 

 

Proof. Provided that Π  is quadratic and strictly convex in each 
tωs , that 0β >  and that 

0
t

pω > , the objective function of problem (Dd), 1
|1

( ; )
t t tt t

T t
tt

pω ω ωω
β −

= ∈
Π∑ ∑ s π

W
, is strictly 

convex in s. It is easily shown that the feasible set 0( )aF  is a polyhedron of NW
+ℝ  with a non-

empty interior. These conditions imply that problem (Dd) is a (possibly very large) strictly 

convex quadratic programming problem with strongly feasible linear constraints. This in turn 

implies that results (i)-(iii) can be obtained by applying the results of Bemporad et al (2002). 

 

Results (iv)-(vi) are obtained by using a Lagrangian approach with a specific Lagrangian 

function. The device used here consists in discounting, by 1tβ − , as well as in weighting, by 

t
pω , the Lagrange multiplier vectors 

tωλ  and 
tωµ . Indeed, this device simply consists in 

defining the Lagrangian problem associated to problem (Dd) according to its multistage 

structure, as in the dynamic programming approach. The considered Lagrangian problem is 

defined as: 

0min min max ( , , ; , )L≥µ λ 0 s s λ µ π a  

where: 

1 1 1 1 1 1

1 1 | 1

1 1 1

0 1| 0

1
|2

1
|2

( , , ; , ) ( ; ) ( )

                            { ( ; ) }

                            ( )

t t t t tt t t t t

t t t t t t

T t
tt

T t

t

L

p

p p

ω

ω ω ω ω ω ω

ω ω ω ω ωω ω

ω ω ω ω ω ω

β

β
− − −

− − −

−
= ∈ ∈

−
=

′ ′≡ Π + + −

′+ Π +

′+ −

∑ ∑ ∑

∑

s λ µ π a s π s λ µ a Ds

s π s λ

µ As Ds

W W

1 1 | 1t t t t tωω ω− − −∈ ∈∑ ∑W W

 

and where the non-negativity constraint Lagrange multiplier vector NW
+∈λ ℝ  has the structure 

of s, i.e. ( )( : 1,..., )t t T≡ =λ λ  with ( ) ( : )
tt t tω ω≡ ∈λ λ W . 
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The feasible set having a non-empty interior, problem (Dd) is strongly dual and the 

solutions to the Lagrangian problem provide those to the original one, e.g. we have: 

 
1 0 0( , ) min min max ( , , ; , )oV Lω ≥= µ λ 0 sπ a s λ µ π a .  

Rearranging the terms in 0( , , ; , )L s λ µ π a  yields: 

1

1
0 | 1| 01

( , , ; , ) { ( ; ) }
t t t t t t tt t

T t
t tt

L pω ω ω ω ω ω ω ωω
β β−

+= ∈
′ ′ ′ ′= Π − + + +∑ ∑s λ µ π a s π D µ A µ s λ µ a

W
 

where 
1 11 1|

1| |t t t tt t t
t p

ω
ω ω ω ωω + ++ +

+ ∈
≡∑µ µ

W
 and 1| TT ω+ ≡µ 0 . 

The optimization problem 0min max ( , , ; , )L≥λ 0 s s λ µ π a  can then be decomposed as : 

           1
| 1|1

min max { ( ; ) }
t t t t t t tt tt t

T t
t tt

p
ω ωω ω ω ω ω ω ωω

β β−
≥ += ∈

′ ′ ′Π − + +∑ ∑ λ 0 s s π D µ A µ s λ
W

. 

Proposition B1 then allows showing result (vi), i.e. problem (Dd) is equivalent to the dual 

problem: 

(DDd) 
1 0 0( , ) min ( ; , )oV Uω = µπ a µ π a  

where : 

1

1
0 | 1| 01

( ; , ) ( )
t t t tt t

T t s
t tt

U pω ω ω ω ωω
β β−

+= ∈
′ ′ ′= Π − + +∑ ∑µ π a π D µ A µ µ a

W
. 

Problem (Dd) being behaved, the solution set in µ to problem (DDd), i.e. : 

 

exists and the solution in s to problem (Dd) can be obtained with: 

        0 | 1|( , ) ( )
t t t t

o s
t tω ω ω ωβ +′ ′= − +s π a s π Dµ Aµ  for t tω ∈W  and  

for any . 

The characterization of 
1 0( , )o

ω π aM  in result (v) follows from: 

1 1 11
0 0 1| 2|( ; , ) ( )sU

ω ω ω ωβ∂
∂

′ ′= − − +
µ

µ π a a Ds π D µ A µ  

and: 

1 0 0( , ) min ( ; , )o Uω = µπ a µ π aM

1 0( , )o
ω∈µ π aM
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1 1 1 1 11 1
| 1| |1

0

| 1|

( )
( ; , )

( )

t t t t t tt t

t

t t t t

s
t tt

s
t t

p p
U

pω

ω ω ω ω ω ωω

ω ω ω ω

β
β

β
− − − − −− −

−∈∂ −
∂

+

′ ′ − + =  
′ ′− − +  

∑
µ

As π D µ A µ
µ π a

Ds π D µ A µ

W
. 

for t tω ∈W  and 2,...,t T= . The specific structure of the tω  and tW  terms imply that (a) there 

is a unique element 1tω −  of 1t −W  such that 
1| tt t ωω

−
∈W  and (b) for this element we have 

1 1|t t t t
p p pω ω ω ω− −

= . This implies that: 

1 1 11| |1
0

| 1|

( )
( ; , )

( )
t t t

tt

t t t

s
t tt

s
t t

U p
ω

ω ω ω
ω

ω ω ω

β
β

β
− − −−∂ −

∂
+

′ ′ − + =  
′ ′− − +  

µ

As π D µ A µ
µ π a

Ds π D µ A µ
 

where 1tω −  is the a unique element of 1t −W  such that 
1| tt t ωω

−
∈W . If 0argmin ( ; , )U∈

µ
µ µ π a  

then the first order conditions of the considered minimization problem provide: 

1 1 11| 2| 0( )s
ω ω ωβ′ ′− + =Ds π D µ A µ a  

and: 

1 1 1| 1| 1| |( ) ( )
t t t t t t

s s
t t t tω ω ω ω ω ωβ β

− − −+ −′ ′ ′ ′− + = − +Ds π D µ A µ As π D µ A µ . 

for 
1| tt t ωω

−
∈W , 1 1t tω − −∈W  and 2,...,t T= . This yields result (v). 

The continuous differentiability of 
1

oVω  in π  can be demonstrated following the approach 

employed for proving problem continuous differentiability of value function (M). From a 

technical viewpoint, problem (Dd) can be interpreted as a (very) large myopic problem. When 

applied to derivatives of 
1

oVω  Theorem 58 of Berkelaar et al (1997) indicates that 
t

oVω  is 

differentiable in π  if the solution in s  to the problem defining 
t

oVω  is unique. The continuous 

differentiability of 
1

oVω  follows the uniqueness of 0( , )os π a . Provided that 

1 0 0( , ) ( , )o oVω
∂

∂ =
π

π a s π a  

and that 0( , )os π a  is continuous in π  on NW ×ℝ A , 
1

oVω  is continuously differentiable in π  on 

tNW ×ℝ A . 
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Result (vii) is demonstrated in the proof of Proposition D3 which provides detailed results on 

these technical issues. 

QED. 

 

 

The next proposition establishes the properties of the value functions of problem (Dd) which 

are defined according to Bellman’s dynamic programming principle.  

 

Proposition D2. Dynamic problem, dynamic programming approach 

Let consider the dynamic crop rotation problem defined in proposition D1. Let define the 

vector | tt ω
+π  as | | ( )( , )

t t tt tω ω ω
+ +≡π π π  where ( ) | 1( : ( ),  1,..., )

t
t T

τω τ ω τ τ τω ω τ+
−≡ ∈ = +π π W , with the 

convention 
11|ω

+ =π π , and let define tW +  as |dim
tt tW ω

+ +≡ π .  

(i) Let 1t − ∈a A  denote the preceding crop acreage at date t. The value functions associated to 

problem (Dd) are recursively defined as: 

| 1 | 1| ( ) 1( , ) max { ( ; ) ( , )  s.t. }
t t t t t t t tt

o o
t t t t tV V

ωω ω ω ω ω ω ω ωβ+ +
− ≥ + −≡ Π + =s 0π a s π π As Ds a  

where : 

 
1 1 11 1

1| ( ) | 1|( )
( , ) ( , )

t t t t t tt t t

o o
t t t tV p Vω ω ω ω ω ωω ω + + ++ +

+ +
+ +∈

≡∑π a π a
W

 

for t tω ∈W  and 1,...,t T= , with the convention 
1 ( )( , ) 0

T T

o
TVω ω+

+ ≡π a . 

(ii) For any | 1( , ) t

t

NW
t tω
+

− ∈ ×π a ℝ A , t tω ∈W  and 1,...,t T= , the optimal choice of  
tωs  in the 

maximization problem defining | 1( , )
t t

o
t tVω ω
+

−π a  is unique: 

 
11 | | ( ) 1( , ) arg max { ( ; ) ( , )  s.t. }

t t t t t t t tt

o o
t t tV

ωω ω ω ω ω ω ω ωβ
+

+
− ≥ −≡ Π + −s 0s π a s π π As Ds a . 

(iii) For any t tω ∈W  and 1,...,t T= , the value function : t

t

NWoVω × →ℝ ℝA  is:  
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(a)  piecewise quadratic and continuous in | 1( , )
tt tω

+
−π a  on tNW ×ℝ A , convex in π  and 

concave in 1t −a  on tNW ×ℝ A , 

(b)  continuously differentiable in | tt ω
+π  on tNW ×ℝ A  with  

| 1 | 1( , ) ( , )
t t t tt

o o
t t t tV

ω ω ω ω ω
∂ + +

− −∂ =
π

π a s π a , 

(c)  continuously differentiable in 1t −a  on tNW ×ℝ A . I.e. there exists a function 

: t

t

NWo K
ω × →µ ℝ ℝA , continuous in 1( , )t −π a  on tNW ×ℝ A , such that 

1
| 1 | 1( , ) ( , )

t t t tt

o o
t t t tVω ω ω ω−

∂ + +
− −∂ =

a
π a µ π a . 

 

Proof. The recursive definition of the value functions in result (i) is an application of 

Bellman’s dynamic programming principle. In the considered case this principle allows 

decomposing the large strictly quadratic programming problem (Dd) into smaller ones. This 

provides result (i). This also implies that the value functions functions 
t

oVω  for t tω ∈W  and 

1,...,t T=  have the properties of the value function 
1

oVω  stated in Proposition D3. 

QED. 

 

 

The properties of the value functions 
t

oVω  in | 1( , )
tt tω

+
−π a  for t tω ∈W  and 1,...,t T=  are identical 

to those of 
1

oVω  in 0( , )π a  because these value functions are the solution function to “small” 

versions of problem (Dd). 

| 1( , )
t t

o
t tω ω
+

−s π a  is the optimal contingent acreage choice in sub-scenario  tω  with previous 

crop acreage 1t−a . This acreage choice is equal to the optimal acreage choice in sub-scenario  

tω   of problem (Dd) if and only if 
11 0( , )

t

o
t ω −− =a As π a  where 1tω −  is the sub-scenario from date 
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1 to date 1t −  corresponding to sub-scenario tω . I.e. | 1 0( , ) ( , )
t t t

o o
t tω ω ω
+

− =s π a s π a  if and only 1t−a  

is equal to the optimal previous acreage choice of problem (Dd) in the only sub-scenario 

happening at date 1t −  satisfying 1( )t t tω ω −∈W . 

This shows that problem (Dd) isn’t easy to solve neither by following a stochastic 

programming approach (Proposition D1), nor by following a dynamic programming approach 

(Proposition D2).  

 

The next proposition establishes some results related to the derivatives of the value function 

1

oVω , and thus to the value functions 
t

oVω  for t tω ∈W  and 1,...,t T= .  

 

Proposition D3. Dynamic problem, crop rotation Lagrange multipliers.  

Let consider the dynamic crop rotation problem, problem (Dd), defined in proposition D1 and 

its value function 
1
:o NWVω × →ℝ ℝA .  The Lagrangian problem associated to problem (Dd)  is 

defined by: 

(LDd) 0min min max ( , , ; , )L≥µ λ 0 s s λ µ π a  

where: 

1 1 1 1 1 1

| 1

1 1 1| 1

0 1| 0

1
|2

1
|2

( , , ; , ) ( ; ) ( )

                            { ( ; ) }

                            ( )

t t t t tt t t

t t t t t tt t t

T t
tt

T t

t

L

p

p p

ω

ω

ω ω ω ω ω ω

ω ω ω ω ωω

ω ω ω ω ω ωω

β

β
−

− − −−

−
= ∈

−
= ∈

′ ′≡ Π + + −

′+ Π +

′+ −

∑ ∑

∑

s λ µ π a s π s λ µ a Ds

s π s λ

µ As Ds

W

W1 1
.

t tω − −∈∑ ∑W

 

Let define the set of solutions in ( , )λ µ  to problem (LDd)  by 
1 0( , )o

ω π aD . 

There exists a K-dimensional function :
t

o NW K
ω × →µ ℝ ℝA  such that: 

(a) if ,0 0na >  then 
1 0( , ) ( , )o

ω∈µ λ π aD  implies 
1 1, 0( , )o

n ω ωµ µ= π a  and: 

1 1 ,0,0 ,0
, 0 , 0 0 0( , ) ( , ) ( , ) ( , )

t t tnn n

o o o o o
n n aa a

V V Vω ω ω ω ωµ µ + +
∂ ∂ ∂

∂∂ ∂
≡ = = =π a π a π a π a , 
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(b) if ,0 0na =  then 
1 1 1, 0 ( , ) , 0( , ) min {  s.t. ( , ) ( , )}o o

n nω ω ωµ µ= ∈µ λπ a µ λ π aD  and: 

 
1 1,0

, 0 0( , ) ( , )
n

o o
n a

Vω ωµ +
∂

∂
=π a π a , 

(c) 
1, 0( , )o

n ωµ π a  is continuous in 0( , )π a  on NW ×ℝ A  

and: 

(d) 
1 1,0

, 0 0( , ) ( , )
n

o o
n a

Vω ωµ ∂
∂=π a π a . 

 

Proof. The differentiability properties of the value functions 
1

oVω  in 0a  are demonstrated by 

considering of the Lagrangian problem associated to problem (Dd) used in the proof of 

Proposition D1, i.e.: 

(LDd) 0min min max ( , , ; , )L≥µ λ 0 s s λ µ π a  

where: 

1 1 1 1 1 1

| 1

1 1 1| 1

0 1| 0

1
|2

1
|2

( , , ; , ) ( ; ) ( )

                            { ( ; ) }

                            ( )

t t t t tt t t

t t t t t tt t t

T t
tt

T t

t

L

p

p p

ω

ω

ω ω ω ω ω ω

ω ω ω ω ωω

ω ω ω ω ω ωω

β

β
−

− − −−

−
= ∈

−
= ∈

′ ′≡ Π + + −

′+ Π +

′+ −

∑ ∑

∑

s λ µ π a s π s λ µ a Ds

s π s λ

µ As Ds

W

W1 1
.

t tω − −∈∑ ∑W

 

We know that the solution in s to problem (LDd) , 0( , )s π a , is unique. Let define the set of 

solutions in ( , )λ µ  to problem (LDd)  by 
1 0( , )o NW KW

ω +⊂ ×π a ℝ ℝD . 
1 0( , )o

ω π aQ  is characterized 

by the KKT conditions of problem (LDd): 

  
1

1

| 1| 0

0 0

0 0

0 0 1 1

( , )   for   and 1,...,

( , ) 0,  ( , ) ,    for   and 1,...,

( , )

( , ) ( , )   for  ( ), 

t t t t t t

t t t t

t t

o
t t t t

o o
t t

o o
t t t t

t T

t T

ω ω ω ω ω ω

ω ω ω ω

ω

ω ω

β ω

ω

ω ω ω
−

+

− −

′ ′− + − + − = ∈ =

′ = ≥ ≥ ∈ =

− =

− = ∈ ∈

π h λ D µ A µ Hs π a 0

s π a λ s π a 0 λ 0

Ds π a a 0

Ds π a As π a 0

W

W

W 1 and 2,..., .t t T−






 = W

 

where 
1 11 1

1| |( )t t t tt t t
t pω ω ω ωω ω + ++ +
+ ∈

≡∑µ µ
W

 and 1| TT ω+ =µ 0  because 
1Tω +

≡µ 0 .  By these KKT 

conditions we know that the terms 
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0 1|( , )
t t t t

o
tω ω ω ωβ +′ ′≡ − −η π a D µ λ A µ  for t tω ∈W  and 1,..., 1t T= −  

and 

0( , )
T T T

o
ω ω ω′≡ −η π a D µ λ  for T Tω ∈W  

are uniquely defined. It suffices to observe that 0 | 0( , ) ( , )
t t t

o o
tω ω ω= − −η π a π h Hs π a  and that the 

terms 0( , )
t

o
ωs π a  are uniquely defined for t tω ∈W  and 1,...,t T= . Moreover, 

t

o
ωs  being 

continuous in 0( , )π a  on N ×ℝ A , :
t

o NW N
ω × →η ℝ ℝA  is continuous in 0( , )π a  on N ×ℝ A  

for t tω ∈W  and 1,...,t T= . 

When applied to 
1

oVω  for derivatives in ,0na  Theorem 50 of Berkelaar et al (1997) yields: 

 
1 1 1,0

0 ( , ) , 0( , ) min {  s.t. ( , ) ( , )}
n

o o
na

Vω ω ωµ+
∂

∂
= ∈

µ λ
π a µ λ π aD  

and: 

1 1 1,0
0 ( , ) , 0( , ) max {  s.t. ( , ) ( , )}

n

o o
na

Vω ω ωµ−
∂

∂
= ∈

µ λ
π a µ λ π aD . 

 

We want to show that there exists a K-dimensional function :
t

o NW K
ω × →µ ℝ ℝA  such that: 

(a) if  ,0 0na >  then 
1 0( , ) ( , )o

ω∈µ λ π aD  implies 
1 1, 0( , )o

n ω ωµ µ= π a  and: 

1 1 ,0,0 ,0
, 0 , 0 0 0( , ) ( , ) ( , ) ( , )

t t tnn n

o o o o o
n n aa a

V V Vω ω ω ω ωµ µ + +
∂ ∂ ∂

∂∂ ∂
≡ = = =π a π a π a π a , 

(b) if ,0 0na =  then 
1 1 1, 0 ( , ) , 0( , ) min {  s.t. ( , ) ( , )}o o

n nω ω ωµ µ= ∈µ λπ a µ λ π aD  and: 

 
1 1,0

, 0 0( , ) ( , )
n

o o
n a

Vω ωµ +
∂

∂
=π a π a , 

(c) 
1, 0( , )o

n ωµ π a  is continuous in 0( , )π a  on NW ×ℝ A  

and: 

(d) 
1 1,0

, 0 0( , ) ( , )
n

o o
n a

Vω ωµ ∂
∂=π a π a . 
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Note that conditions (a)-(c) imply condition (d) and that condition (d) implies that 
1

oVω  is 

continuously differentiable in 0a  on NW ×ℝ A . 

 

We proceed by backward induction and by using the KKT condition equation system and, in 

particular: 

0

1| 0

0

( , )  for 

( , )  for  and 1,..., 1

( , ) 0 and   for  and 1,...,

T T T

t t t t

t t t

o
T T

o
t t t

o
t t

t T

t T

ω ω ω

ω ω ω ω

ω ω ω

ω

β ω

ω
+

 ′ − = ∈
 ′ ′− − = ∈ = −
 ′ = ≥ ∈ =

D µ λ η π a

D µ λ A µ η π a

s π a λ λ 0

W

W

W

  

with 0( , )
t

o
ω ≥s π a 0  or, equivalently: 

, , , 0

, , , 1| , 0

, 0 , ,

( , )  for 

( , )  for  and 1,..., 1

( , ) 0 and 0 for  and 1,...,

for ( , ) .

T T T

t t t t

t t t

o
n nk nk T T

o
n nk k t nk t t

o
nk nk nk t t

t T

s t T

n k

ω ω ω

ω ω ω ω

ω ω ω

µ λ η ω

µ λ βµ η ω

λ λ ω
+

 − = ∈


− − = ∈ = −


= ≥ ∈ =
 ∈ ×

π a

π a

π a

K K

W

W

W
 

Let define the sets:  

, ( ), 01
, 0 , ( ),

( ), ( ), 0 ( ),

( , )
( , ) ( , ) :

( , ) 0,  
T T T

T T T

T T t

o
n no K

n n n o
n n n

ω ω ω
ω ω ω

ω ω ω

µ
µ +

 × − = ≡ ∈ 
′ = ≥  

ι λ η π a
π a λ

λ s π a λ 0
ℝQ  

and : 

, 0 , 0( , ) { : ( , ) ( , )}
T T T T T

o
n nω ω ω ω ωµ≡ ∈ ∈π a µ λ π aℝM Q   

for n∈K  and T Tω ∈W , and: 

, ( ), 1| 0

1
, 0 , ( ), ( ), ( ), 0 ( ),

1| , 1| 0

( , )

( , ) ( , ) : ( , ) 0,  

( , )

t t t t

t t t t t t

t t

o
n n t

o K o
n n n n n n

o
t n t

ω ω ω ω

ω ω ω ω ω ω

ω ω

µ β

µ
+

+

+ +

 × − − =
  ′≡ ∈ = ≥ 
 

∈  

ι λ µ η π a

π a λ λ s π a λ 0

µ π a

ℝQ

M

, 

, 0 , 0( , ) { : ( , ) ( , )}
t t t t t

o
n nω ω ω ω ωµ≡ ∈ ∈π a µ λ π aℝM Q  

and: 
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1 11 1

1 1

| ,( )

, 1| 0

, , 0 1 1

( , ) :
( , ) for ( )

t t tt t t

t

t t

n no
n t n o

n n t t t

pω ω ωω ω
ω

ω ω

µ µ
µ

µ ω ω
+ ++ +

+ +

∈
+

+ +

 = ≡ ∈ 
∈ ∈  

∑
π a

π a
ℝ

W
M

M W
 

for n∈K , t tω ∈W  and 1,..., 1t T= − . 

 

We want to show by backward recursion that for any 1,..., 1t T= − , 1 1t tω − −∈W , 1( )t t tω ω −∈W  

and n∈K  the function , :
t

o NW
n ωµ × →ℝ ℝA  defined by: 

, 0 , 0 , 1| 0( , ) max{ ( , ) ( , ) : }
t t t

o o o
n nk k t kω ω ωµ η βµ +≡ + ∈π a π a π a K  

satisfies: 

(a.t) , 0 , 0( , ) { ( , )}
t t

o o
n nω ωµ=π a π aM  if 

1, 0( , ) 0
t

o
n ω −

′ >ι s π a  (or ,0 0na >  if 1t = ), 

(b.t) , 0 , , 0( , ) min{ ( , )}
t t t

o o
n n nω ω ωµ µ= ∈π a π aM  if , 0( , ) 0

t

o
n ω′ =ι s π a  (or ,0 0na =  if 1t = ), 

(c.t) , t

o
n ωµ  is continuous in 0( , )π a  on NW ×ℝ A  for any n∈K . 

Note that conditions (a.t) and (b.t) imply that , 0 , , 0( , ) min{ ( , )}
t t t

o o
n n nω ω ωµ µ= ∈π a π aM  for any 

t tω ∈W  and n∈K . 

 

First, let assume that the function 
1, :

t

o NW
n ωµ

+
× →ℝ ℝA  satisfies: 

(a. 1t + ) 
1 1, 0 , 0( , ) { ( , )}

t t

o o
n nω ωµ

+ +
=π a π aM  if , 0( , ) 0

t

o
n ω′ >ι s π a , 

(b. 1t + ) 
1 1 1, 0 , , 0( , ) min{ ( , )}

t t t

o o
n n nω ω ωµ µ

+ + +
= ∈π a π aM  if , 0( , ) 0

t

o
n ω′ =ι s π a , 

(c. 1t + ) 
1, t

o
n ωµ

+
 is continuous in 0( , )π a  on NW ×ℝ A  for any n∈K  

for any t tω ∈W , 1 1( )t t tω ω+ +∈W  and n∈K . 

We aim at showing that , t

o
n ωµ  satisfies conditions (a.t)-(c.t) if conditions (a. 1t + )-(c. 1t + ) 

hold for
1, t

o
n ωµ

+
 for 1 1( )t t tω ω+ +∈W  and n∈K . 
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Let define the functions 
1, :

t

o NW
ωµ

+
× →

ℓ
ℝ ℝA : 

 
1 11 1

, 1| 0 | , 0( )
( , ) ( , )

t t t tt t t

o o
k t kpω ω ω ωω ω

µ µ
+ ++ +

+ ∈
≡∑π a π a

W
 

for t tω ∈W   and k ∈K . From the continuity of 
1, t

o
k ωµ

+
 in 0( , )π a  on NW ×ℝ A  we know that 

, 1| :
t

o NW
k t ωµ + × →ℝ ℝA  is also continuous in 0( , )π a  on NW ×ℝ A . This implies, together with 

the continuity of 
t

o
ωη  in 0( , )π a  on NW ×ℝ A , that condition (c.t) necessarily holds. 

With  
1 1 1, 0 , , 0( , ) min{ ( , )}

t t t

o o
k k kω ω ωµ µ

+ + +
≡ ∈π a π aM  and 

1|
0

t t
pω ω+

>  for 1 1( )t t tω ω+ +∈W  we 

have , 1| 0 , 1| , 1| 0( , ) min{ ( , )}
t t t

o o
k t k t k tω ω ωµ µ+ + += ∈π a π aM . Note also that, for any ( , )t tn ω ∈ ×WK , 

there exists , ( ), , 0( , ) ( , )
t t t

o
n n nω ω ωµ ∈λ π aQ  with , 0

tnk ωλ =  for some k ∈K . Two cases may occur, 

depending on whether 
1, 0( , ) 0

t

o
n ω −

′ >ι s π a  or 
1, 0( , ) 0

t

o
n ω −

′ =ι s π a . If 
1, 0( , ) 0

t

o
n ω −

′ >ι s π a  then there 

necessarily exists k ∈K   such that , 0( , ) 0
t

o
nks ω >π a  and we necessarily have , 0

tnk ωλ =  if 

, ( ), , 0( , ) ( , )
t t t

o
n n nω ω ωµ ∈λ π aQ . If 

1, 0( , ) 0
t

o
n ω −

′ =ι s π a  and , ( ), , 0( , ) ( , )
t t t

o
n n nω ω ωµ ∈λ π aQ  then we 

necessarily have , 0
tnk ωλ =  for , 0 , 1|argmax{ ( , ) : }

t t

o
n tk ω ωη βµ +∈ + ∈π a
ℓ ℓ

ℓ K  for any 

, 1| , 1| 0( , )
t t

o
k t k tω ωµ + +∈ π aM  as long as: 

 
, ( ),, , , , ( ), , 0min {  s.t. ( , ) ( , )}

t n n t t t tt t

o
n n n n nω ωω µ ω ω ω ωµ µ µ≥= ∈λ 0 λ π aQ . 

With: 

, , 0 , , 1|

, ( ), , 0 , 1| , 1| 0

, 0 , ,

( , )   for 

( , ) ( , ) ( , )

( , ) 0 and 0  for 

t t t t

t t t t t

t t t

o
n nk nk k t

o o
n n n k t k t

o
nk nk nk

k

s k

ω ω ω ω

ω ω ω ω ω

ω ω ω

µ η λ βµ

µ µ

λ λ

+

+ +

 = + + ∈
∈ ⇔ ∈


= ≥ ∈

π a

λ π a π a

π a

K

K

Q M  

the results obtained above imply that: 
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,

, ( ),

, , 1|

, , 0

( , ) , , ( ), , 0

, 0 , , 1|

( , )

, 1| , 1| 0 , , 0

min { ( , )}

min { : ( , ) ( , )}

( , )  

max min s.t.

 ( , ),  ( , ) 0,  

n t tt

n n t t t tt t

t t t

nk k tt t

t t t t

o
n n

o
n n n n

o
nk nk k t

k

o o
k t k t nk nks

ω

ω ω

ω ω

µ ω ω

µ ω ω ω ω

ω ω ω

λ µ

ω ω ω ω

µ

µ µ

η λ βµ

µ λ λ
+

+

∈

+ +

∈

=
∈

=

+ +

∈ =

λ

π a

λ π a

π a

π a π a
K

M

Q

M ,

.

0
tnk ω

  
   
  
  ≥   

and, as a result that : 

,

,

, , 0

, 0 , , 1| 0

, , 0 ,

, 0 , 1| 0

min { ( , )}

( , ) ( , )

max min s.t.

 ( , ) 0,  0

max{ ( , ) ( , ) : }.

n t tt

t t t

nk t

t t t

t t

o
n n

o o
nk nk k t

k

o
nk nk nk

o o
nk k t

s

k

ω

ω

µ ω ω

ω ω ω

λ

ω ω ω

ω ω

µ

η λ βµ

λ λ

η βµ

+

∈

+

∈

=

  + +
   
  
  = ≥   

=
+ ∈

π a

π a π a

π a

π a π a

K

K

M

 

Provided that , 0 , 0 , 1| 0( , ) max{ ( , ) ( , ) : }
t t t

o o o
n nk k t kω ω ωµ η βµ +≡ + ∈π a π a π a K , this provides condition 

(b. 1t + ). 

If 
1, 0( , ) 0

t

o
n ω −

′ >ι s π a  (or ,0 0na >  if 1t = ), then there necessarily exists k ∈K  such that 

, 0( , ) 0
t

o
nks ω >π a  and , 0

tnk ωλ =  if , ( ), , 0( , ) ( , )
t t t

o
n n nω ω ωµ ∈λ π aQ . This in turn implies that

, 0( , ) 0
t

o
k ω′ >ι s π a  and, by condition (a. 1t + ), that 

1 1, 0 , 0( , ) { ( , )}
t t

o o
n nω ωµ

+ +
=π a π aM for any 

1 1( )t t tω ω+ +∈W  and, thus that , 1| 0 , 1| 0( , ) { ( , )}
t t

o o
k t k tω ωµ+ +=π a π aM . Finally, we obtain that: 

 , , 0 , 1| 0( , ) ( , )
t t t

o o
n nk k tω ω ωµ η βµ += +π a π a  for any , ( ), , 0( , ) ( , )

t t t

o
n n nω ω ωµ ∈λ π aQ . 

As a result, we obtain that the optimal value, tn ωµ  is uniquely defined, i.e. that 

, 0 , 0( , ) { ( , )}
t t

o o
n nω ωµ=π a π aM  or that condition (a.t) holds. 
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Second, for completing the proof we need to show that conditions (a.t)-(c.t) hold for , t

o
n ωµ  for 

t T= , 1 1T Tω − −∈W , 1( )T T Tω ω −∈W  and n∈K . Of course in this case we have 

1, 1| 0 , 1| ,( , ) 0
T T T

o
k T k T kω ω ωµ µ µ

++ += = =π a . 

The conditions defining 0( , )
T

o
ω π aQ  correspond to the first order condition in ( , )

T Tω ωλ µ  of 

a myopic problem, i.e. to that of: 

 
1| 0max { ( ; )  s.t. ( , ) 0 and }

T T T T TT

o
Tω ω ω ω ω ω−

Π = = ≥s s π Ds As π a s 0  

for 1( )T T Tω ω −∈W  and 1 1T Tω − −∈W . Hence, from Proposition C1 we know that for any  

1 1T Tω − −∈W  and 1( )T T Tω ω −∈W  the function 
1, :

t

o NW
n ωµ

+
× →ℝ ℝA  defined by: 

, 0 , 0( , ) max{ ( , ) : }
T T

o o
n nk kω ωµ η≡ ∈π a π a K  

satisfies: 

(a.T) , 0 , 0( , ) { ( , )}
T T

o o
n nω ωµ=π a π aM  if 

1, 0( , ) 0
T

o
n ω −

′ >ι s π a , 

(b.T) , 0 , 0( , ) min{ ( , )}
T T

o o
n nω ωµ µ= ∈π a π aM  if 

1, 0( , ) 0
T

o
n ω −

′ =ι s π a , 

(c.T) , T

o
n ωµ  is continuous in 0( , )π a  on NW ×ℝ A  for any n∈K . 

Note that , 0( , )
T

o
n ω π aM  is not necessarily equal to , 0[ ( , ), )

T

o
n ωµ +∞π a  if 

1, 0( , ) 0
T

o
n ω −

′ =ι s π a  as in 

Proposition C1 because 
1, 0( , ) 0

T

o
n ω −

′ =ι s π a  cannot hold if , Tn ωµ  is sufficiently large. Indeed, 

1 1 1 0( , ) ( , )
T T T

o
ω ω ω− − −

∈µ λ π aQ  and , , 0( , )
T T

o
n nω ωµ ∈ π aM  for any 1( )T T Tω ω −∈W  imply: 

1 1 1 11
, , 0 , | | ,( )

( , )
T T T T T TT T T

o
n n T npω ω ω ω ω ωω ω

µ η βµ µ
− − − −−∈

− ≥ =∑π a
ℓ ℓ W

  for ∈ℓ K  

while, as will be shown below, 
1, Tωµ

−ℓ
 may be bounded from above (e.g., 

1, 0( , )
T

o
ω −
π a

ℓ
M  is a 

singleton if 
2, 0( , ) 0

T

o
ω −

′ >ι s π a
ℓ

). 

QED. 
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Appendix E. Some useful results 

 

 

This Appendix collects definitions and results related to nonlinear programming which are 

use in Appendices B-D.  

The results collected in section E1 consider sensitivity analysis for general nonlinear 

programming problems. The results given in section E2 are related to quadratic 

multiparametric quadratic programming. They are mainly due to Bemporad et al (2002) and 

Berkelaar et al (1997). 

 

E.1. Nonlinear programming sensitivity analysis 

This section considers general nonlinear programming problems and sensitivity analysis of 

their solution functions. The results and definitions given in this section reproduce (with slight 

formal modifications) those collected in Fiacco and Kyparisis (1985). The Theorems are 

numbered as in Fiacco and Kyparisis (1985) and they cite references provided in this article. 

Most of these results are well known. They consider the characterization of the solutions to 

nonlinear programming problems or sensitivity analysis for these solutions (e.g. results are 

known implicit function or envelope properties). 

The results published in Jittorntrum (1984) are less frequently considered. These results are 

referred to as Jittorntrum (1978, 1981) in Fiacco and Kyparisis (1985). 

 

E1.1. Necessary and sufficient conditions for local minima 

Let consider the nonlinear programming problem 

(P) min { ( ) s.t. ( ) 0 for 1,...,  and ( ) 0 for 1,..., }i jf g i m h j p≥ = = =x x x x  
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assuming that the functions f, g and h are twice continuous differentiable in x in a 

neighborhood of ox . The Lagrangian problem associated to problem (P) is given by 

1 1
( , , ) ( ) ( ) ( ) ( ) ( ) ( )

m p

i i j ji j
L f u g w h f

= =
′ ′≡ − + = − +∑ ∑x u w x x x x u g x w h x . 

 

Definition. Karush-Kuhn-Tucker (KTT) conditions. The KKT conditions holds at ox  for 

problem (P) if there exists Lagrange multipliers ou  and ow  such that: 

( , , )

( ) 0,  0 and ( ) 0 for 1,...,

( ) 0 for 1,...,

o o o

o o o o
i i i i

o
j

L

u g u g i m

h j p

∂
∂ =

= ≥ ≥ =

= =

x
x u w 0

x x

x

 

 

Theorem 2.1. Necessary first order conditions for a local minimum. Karush (1939) and Kuhn 

and Tucker (1951). 

Suppose that ox  is a local minimum of problem (P) and an appropriate constraint 

qualifications hold at ox . 

Then, the (KKT) conditions hold at ox  for problem (P). Conditions (LI) are appropriate 

constraint qualification conditions. 

 

Definition. Binding inequality constraint set. ( ) { 1,..., : ( ) 0}o o o
ii m g≡ = =x xB  

 

Definition. Linear Independence conditions (LI). Conditions (LI) hold at ox  for problem (P) if 

the vectors ( )o
ig∂

∂x
x  for ( )oi ∈ xB  and ( )o

jh∂
∂x

x  for 1,...,j p=  are linearly independent. 

If (LI) holds at ox  then ox  is said to be a regular point of problem (P). 
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Definition. Second order necessary conditions (SON). The second order necessary conditions 

hold for problem (P) at ox  with ou  and ow if 

2

( , , ) 0o o oL∂
′∂ ∂

′ ≥
x x

z x u w z  

for all z such that: 

( ) 0 if ( )

( ) 0 if 1,...,  and ( )

( ) 0 for 1,...,

o o
i

o o
i

o
j

g i

g i m i

h j p

∂
′∂

∂
′∂

∂
′∂

≥ ∈

= = ∉

= =

x

x

x

x z x

x z x

x z

B

B  

 

Theorem 2.2. Second order necessary conditions (SON), Fiacco and McCormick (1969) and 

McCormick (1976). 

Suppose that ox  is a local minimum of problem (P) and that conditions (LI) for problem (P) 

hold at ox . 

Then the conditions (KKT) and (SON) for problem (P) hold at ox  with associated unique 

Lagrange multiplier vectors ou  and ow . 

 

Definition. Second order sufficient conditions for a strict local minimum (SOS). The second 

order sufficient conditions for a strict local minimum hold for problem (P) at ox  with ou  and 

ow  if: 

2

( , , ) 0o o oL∂
′∂ ∂

′ >
x x

z x u w z  

for all ≠z 0  such that: 

( ) 0 for 1,...,  such that ( )

( ) 0 for 1,...,  such that 0

( ) 0 for 1,...,

o o
i

o o
i i

o
j

g i m i

g i m u

h j p

∂
′∂

∂
′∂

∂
′∂

≥ = ∈

= = >

= =

x

x

x

x z x

x z

x z

B

 

 

Theorem 2.3. Pennisi (1953) and Fiacco and McCormick (1968). 
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Suppose conditions (KKT) hold at ox  with some Lagrange multiplier vectors ou  and ow  and 

that conditions (SOS) also hold. 

Then ox  is a strict local minimum of problem (P). 

 

 

E1.2. Sensitivity analysis and implicit function properties 

Let consider the perturbed nonlinear programming problem : 

( )P ε  min { ( , ) s.t. ( , ) 0 for 1,...,  and ( , ) 0 for 1,..., }i jf g i m h j p≥ = = =x x ε x ε x ε  

where ε  is a perturbation parameter assuming that the functions f, g, h, f∂
∂x , ∂

∂x
g  and ∂

∂x
h  

are continuous differentiable in ( , )x ε  in a neighborhood of ( , )o ox ε . The Lagrangian function 

associated with problem with problem P( )ε  is given by 

( , , , ) ( , ) ( , ) ( , )L f ′ ′= − +x u w ε x ε u g x ε w h x ε . 

All results and definitions of Section 1 apply to problem P( )oε . 

 

Definition. Strict complementary slackness conditions (SCS). The strict complementary 

slackness conditions hold for problem P( )oε  at ox  with respect to ou  if: 

0o
iu >  for 1,...,i m=  such that ( , ) 0o o

ig =x ε . 

 

Theorem 3.1. Fiacco (1976). 

Suppose that conditions (KKT), (SOS) and (LI) of problem P( )oε  hold at ox  with associate 

Lagrange multiplier vectors ou  and ow  and that the conditions (SCS) also hold. 

Then, 
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(a) ox  is an isolated local minimum of ( )oP ε  and the Lagrange multiplier vectors ou  and 

ow  are unique; 

(b) for ε  in a neighborhood of  oε , there exists a continuously differentiable vector function 

( )( ) ( ), ( ), ( )≡y ε x ε u ε w ε  satisfying conditions (KKT) and (SOS) of problem ( )P ε  such 

that ( ) ( , , )o o o o≡y ε x u w , and, hence, ( )x ε  is a locally unique local minimum for problem 

P( )oε  with associated Lagrange multiplier vectors ( )u ε  and ( )w ε ; 

(c) the (LI) and (SCS) conditions hold at ( )x ε  for ε  in a neighborhood of  oε . 

 

 

The derivatives of ( )y ε  in ε  in a neighborhood of  o
ε  can be calculated by using the 

conditions (KKT) of problem ( )P ε  at ( )y ε  : 

[ ( ), ( ), ( ), ]

( ) [ ( ), ] 0 for 1,...,

[ ( ), ] 0 for 1,...,
i i

j

L

u g i m

h j p

∂
′∂ =

= =
= =

x
x ε u ε w ε ε 0

ε x ε ε

x ε ε

 

where: 

1 1
[ ( ), ( ), ( ), ] ( , , , ) ( ) ( , ) ( ) ( , )

m p

i i j ji j
L f u g w h∂ ∂ ∂ ∂

∂ ∂ ∂ ∂= =
= − +∑ ∑x x x x

x ε u ε w ε ε x u w ε ε x ε ε x ε  

The assumptions of Theorem 3.1. imply that the Jacobian, ( )M ε , with respect to ( , , )≡y x u w  

of this system of KKT conditions is nonsingular. As a result: 

( ) ( ) ( )∂
∂ = −
ε

M ε y ε Q ε   and 1( ) ( ) ( )∂ −
∂ = −
ε
y ε M ε Q ε  

where ( )Q ε  is the Jacobian with respect to ε  of this system of KKT conditions. 

 

At o=ε ε  we have: 
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( )

( ) ( ) ( ) ( ) ( )

( )

o

o o o o o

o

∂
′∂

∂ ∂
′ ′∂ ∂

∂
′∂

 
 = = − 
 
 

ε

ε ε

ε

x ε

M ε y ε M ε u ε Q ε

w ε

 

where : 

2

1 1

1 1 1

1

m p

m m m

p

L g g h h

u g g

u g g

h

h

∂ ∂ ∂ ∂ ∂
′∂ ∂ ∂ ∂ ∂ ∂

∂
′∂

∂
′∂

∂
′∂

∂
′∂

 
 
 
 
 

≡  
 
 
 
 
 

x x x x x x

x

x

x

x

0 0 0 0 0

0 0 0 0 0
M 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⋯ ⋯

⋮ ⋱

⋮

  and 

2

1 1

1

m m

p

L

u g

u g

h

h

∂
′∂ ∂

∂
′∂

∂
′∂

∂
′∂

∂
′∂

 
 
 
 
 

≡  
 
 
 
 
 

x ε

ε

ε

ε

ε

Q
⋮

⋮

 

i.e.: 

2 2

1 1

1 11 1 1 1

1

m p

i i j ji j

mm m m m

p

L g u h w L

u gu g g u

uu g g u

h

h

∂ ∂ ∂ ∂ ∂ ∂ ∂
′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂= = ′∂ ∂

∂∂ ∂ ∂
′∂′ ′ ′∂ ∂ ∂

∂
′∂

∂ ∂ ∂∂ ∂ ∂
′ ′∂ ∂ ′∂′ ′ ′∂ ∂ ∂

∂ ∂ ∂
′∂ ′ ′∂ ∂

∂ ∂
′ ′∂ ∂

 + +
 
 +
  
  = = = − = − + 
  

   
 
 
  

∑ ∑x x ε x ε x ε x ε

εx ε ε

ε

ε ε x ε ε

ε x ε

x ε

x

x
x

M y M u Qx
w x

x

⋮⋮

⋮

1

m

p

g

h

h

∂
′∂

∂
′∂

 
 
 
 
 
 
 
 
 
 
 

ε

ε

ε

⋮

 

and : 

2 2 2 2

1 1

m p

i i j ji j
L f u g w h∂ ∂ ∂ ∂

′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂= =
= − +∑ ∑x x x x x x x x

 

are evaluated at ( , , , )o o o ox u w ε . 

 

Theorem 3.2. McCormick (1979). 

Suppose that conditions (KKT) and (SON) for problem ( )oP ε  hold at ox  with associated 

Lagrange multiplier vectors ou  and ow . 

Then the Jacobian matrix ( )oM ε  is invertible if and only if conditions (SOS), (LI) and  (SCS) 

for problem P( )oε  also hold at ox  with ou  and ow . 
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Definition. Strong Second order sufficient conditions for a strict local minimum (SSOS). The 

strong second order sufficient conditions for a strict local minimum hold for problem P( )oε  at 

ox  with ou  and ow  if: 

2

( , , ) 0o o oL∂
′∂ ∂

′ >
x x

z x u w z  

for all ≠z 0  such that: 

( ) 0 for 1,...,  such that 0

( ) 0 for 1,...,

o o
i i

o
j

g i m u

h j p

∂
′∂

∂
′∂

= = >

= =
x

x

x z

x z
 

 

 

These conditions allow obtaining sensitivity analysis results without condition (SCS). Note 

that conditions (SOS) and (SSOS) differ by the conditions they place on z. The condition: 

( ) 0 for 1,...,  such that ( )o o
ig i m i∂

′∂ ≥ = ∈
x

x z xB  

in conditions (SOS) is omitted in conditions (SSOS). I.e. 
2

( , , ) 0o o oL∂
′∂ ∂

′ >
x x

z x u w z  must hold 

for set of z larger in conditions (SSOS) than in conditions (SOS). 

 

Theorem 4.1. Jittortrum (1978, 1981) and Robinson (1980). 

Suppose that conditions (KKT), (LI) and (SSOS) for problem P( )oε  hold at ox  with 

associated Lagrange multiplier vectors ou  and ow . 

Then, 

(a) ox  is an isolated local minimum of problem P( )oε  and the Lagrange multiplier vectors 

ou  and ow  are unique; 
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(b) for ε  in a neighborhood of  o
ε , there exists a continuous vector function 

( )( ) ( ), ( ), ( )≡y ε x ε u ε w ε  satisfying conditions (KKT) and (SSOS) for problem ( )P ε  such 

that ( ) ( , , )o o o o≡y ε x u w , and, hence, ( )x ε  is a locally unique local minimum of  problem 

( )P ε  with associated unique Lagrange multiplier vectors ( )u ε  and ( )w ε ; 

(c) conditions (LI) hold at ( )x ε  for ε  in a neighborhood of  oε ; 

(d) there exist 0t >  and 0d >  such that for all ε  with o d− <ε ε , it follows that 

( ) ( )o ot− < −y ε y ε ε ε . 

 

 

The results collected in Theorem 4.1 (and in Theorem 7.3) were published in Jittorntrum 

(1984). Basically, Jittorntrum (1984) shows that the constraint qualification condition (SCS) 

condition is not necessary for obtaining implicit function (Theorem 4.1) and envelope 

(Theorem 7.3) properties as long as the considered problem has a unique solution is s and the 

constraint qualification condition (LI) holds at the optimum. Condition (LI) ensures that the 

solution to the dual problem in the Lagrange multipliers of the considered constraints is 

unique. 

 

E1.3. Differentiability of the optimal value function and envelope properties 

Definition. Local optimal value function. A local optimal value function of problem ( )P ε  is 

defined as ( ) [ ( ), ]o of f≡ε x ε ε
ℓ

where ( )ox ε  is an isolated local minimum of problem ( )P ε . 

 

Theorem 7.2. Armacost and Fiacco (1978) and Fiacco (1980). 

Suppose that the conditions (KKT), (SOSC), (LI) and (SCS) hold at ox   for problem P( )oε . 
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Then, in a neighborhood of o=ε ε , the local optimal value function of
ℓ

 is twice continuously 

differentiable and: 

(a) ( ) [ ( ), ( ), ( ), ]o o o of L=ε x ε u ε w ε ε
ℓ

; 

(b) 
( ) [ ( ), ( ), ( ), ]

              [ ( ), ] [ ( ), ] ( ) [ ( ), ] ( )

o o o o

o o o o o

f L

f

∂ ∂
∂ ∂

∂ ∂ ∂
∂ ∂ ∂

=

′ ′= − +
ε ε

ε ε ε

ε x ε u ε w ε ε

x ε ε g x ε ε u ε h x ε ε w ε

ℓ

 

(c) 

2 2

2 2

1( ) [ ( ), ( ), ( ), ] ( ) ( ) ( )

               [ ( ), ( ), ( ), ] [ ( ), ( ), ( ), ] ( )

                        [ ( ), ] ( ) [

o o o o o o o

o o o o o o o

o o

f L

L L

∂ ∂ −
′ ′∂ ∂ ∂ ∂

∂ ∂ ∂
′ ′ ′∂ ∂ ∂ ∂ ∂

∂ ∂ ∂
′∂ ∂ ∂

′= −

= +

′− +

ε ε ε ε

ε ε ε x ε

ε ε ε

ε x ε u ε w ε ε Q ε M ε Q ε

x ε u ε w ε ε x ε u ε w ε ε x ε

g x ε ε u ε h

ℓ

( ), ] ( )o o∂
′∂

′
ε

x ε ε w ε

 

 

Theorem 7.3. Jittorntrum (1978, 1981). 

Suppose that the conditions (KKT), (LI) and (SSOSC) hold at ox   for problem P( )oε . 

Then, in a neighborhood of o=ε ε , the local optimal value function of
ℓ

 is continuously 

differentiable with: 

(a) ( ) [ ( ), ( ), ( ), ]o o o of L=ε x ε u ε w ε ε
ℓ

, 

(b) ( ) [ ( ), ( ), ( ), ]o o o of L∂ ∂
∂ ∂=
ε ε

ε x ε u ε w ε ε
ℓ

, 

(c) ( ) [ ( ), ] [ ( ), ] ( ) [ ( ), ] ( )o o o o o of f∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

′ ′= − +
ε ε ε ε

ε x ε ε g x ε ε u ε h x ε ε w ε
ℓ

. 

 

 

Jittorntrum (1984) also shows that the local optimal value function of
ℓ

 is twice directionally 

differentiable under the conditions of Theorem 7.3. 

 

E.2. Sensitivity analysis results for (multi-)parametric quadratic programming problems 

This section collects results related to the so-called parametric quadratic programming 

problems. The literature on parametric programming problems seeks to “fully” characterize 
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the solutions to parameterized programming problems as functions of their parameters. While 

sensitivity analysis theory addresses the same question in a neighborhood of some parameter 

values, parametric programming theory seeks to explore the whole parameter space. Of 

course, this requires considering specific problems such as quadratic programming problems. 

The seminal work Bemporal et al (2002) lies at the root of a series of articles on parametric 

quadratic programming in the automatic control literature. It provides elements for the 

characterization of the solutions to quadratic programming problems on their whole parameter 

space. It also shows how this characterization can be used for designing efficient algorithms 

for finite and infinite horizon linear quadratic optimal control problems subject to state and 

input constraints. This section collects some of the results published in this literature which 

can be used for solving dynamic programming problems. 

It also presents sensitivity analysis results due to Berkelaar et al (1997) on specific on 

parametric quadratic programming problems. These authors address different questions, but 

their results can be used for complementing those obtained in the automatic control literature. 

 

E.2.1. Parametric (strictly convex) quadratic problems 

Let consider the following quadratic programming problem: 

QP(θ ):  ( )min { ( ) 1/ 2 1/ 2 }∈ ′ ′ ′+ + × + ×x θ
x h Fθ x Hx θ ΨθF  

where the feasible set ( )θF  of problem QP(θ ) is the following polyhedron: 

( ) { :  for  and  for }N
c c c c c cb c b c′ ′ ′ ′≡ ∈ = + ∈ ≤ + ∈θ x a x s θ a x s θℝF E J  with ∈ Θθ  

The parameter space PΘ ⊆ ℝ  is defined as a polyhedron. Let assume that ∩ = ∅E J  and let 

{1,..., }C≡ ∪ ≡C E J  denote the whole set of (non redundant) constraints. Let further assume 

that [ : ] C N
c c ×′≡ ∈ ∈A a ℝC , [ : ] C

cb c≡ ∈ ∈b ℝC  and [ : ] C P
c c ×′≡ ∈ ∈S s ℝC , and that the 

parameter set is full dimensional. 
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Assuming that A is positive semi-definite and that ( )θF  is not empty, the solution in ( )∈x θF  

to the KKT conditions: 

,   

( ) 0,   

0,   

0,   

0,   

C

c c c c

c c c

c c c

c

b c

b c

b c

c

λ

λ

′ + + + = ∈
 ′ ′× − − = ∈
 ′ ′− − = ∈
 ′ ′− − ≤ ∈

 ≥ ∈

h Fθ Hx A λ 0 λ

a x s θ

a x s θ

a x s θ

ℝ

J

E

J

J

 

characterize * ( )θX . If H is positive definite then problem QP(θ ) is strictly convex in x and, 

as a result, * ( )θX reduces to the singleton formed by the unique solution in x, * ( )x θ , to 

problem QP(θ ), i.e. * *( ) { ( )}=θ x θX . 

 

The inactive set is defined as: 

( , ) \ ( , )≡x θ x θN C A . 

The solution set of problem QP(θ ) is defined as: 

*
( )( ) argmin { ( ) 1/ 2 1/ 2 }∈ ′ ′ ′≡ + + × + ×x θθ x h Fθ x Hx θΨθFX  

and the corresponding optimal active set * ( )θA  is the set of constraints which are active for 

all * ( )∈x θX : 

* *( ) { ( , ) for any ( )}c≡ ∈ ∈θ x θ x θA A X . 

 

For a given active set A, the matrices A A , b A  and S A  are formed by selecting the rows of the 

matrices A, b and S belonging to A. The Linear Independence Constraint Qualification 

(LICQ) holds for the active set A if and only if A A  has full row rank.  

Let ( )∈x θF , the set of active constraints or active set at x is defined as: 

( , ) { : }c c cc b′ ′≡ ∈ = +x θ a x s θA C . 

The inactive set is defined as: 
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( , ) \ ( , )≡x θ x θN C A . 

The solution set of problem QP(θ ) is defined as: 

*
( )( ) argmin { ( ) 1/ 2 1/ 2 }∈ ′ ′ ′≡ + + × + ×x θθ x h Fθ x Hx θΨθFX  

and the corresponding optimal active set * ( )θA  is the set of constraints which are active for 

all * ( )∈x θX : 

* *( ) { ( , ) for any ( )}c≡ ∈ ∈θ x θ x θA A X . 

 

Proposition E1. (Bemporad et al, 2002). Let consider problem QP(θ ) and let assume that H 

is positive definite and that: 

′ 
 
 

Ψ F

F H
 is positive semi-definite. 

Then: 

(a) The set of feasible parameters, i.e. * { : ( ) }Θ ≡ ∈ Θ ≠ ∅θ θF , is polyhedral. 

(b) The value function * *( ) :V Θ →θ ℝ  to problem QP(θ )  defined by 

*
( )( ) min { ( ) 1/ 2 1/ 2 }V ∈ ′ ′ ′≡ + + × + ×x θθ x h Fθ x Hx θΨθF  

is piecewise quadratic, continuous and convex in θ  on *Θ , 

(c) The solution function in x to problem QP(θ ) is unique and defines the solution function 

* *( ) : NΘ →x θ ℝ  by : 

*
( )( ) min { ( ) 1/ 2 1/ 2 }∈ ′ ′ ′≡ + + × + ×x θx θ x h Fθ x Hx θΨθF . 

*x  is piecewise affine and continuous in θ  on *Θ . 

 (e) If the (LICQ) condition holds for * ( )θA  on *Θ  then the solution in λ  to the KKT 

conditions is also unique and defines the solution function * *( ) : CΘ →λ θ ℝ . *λ  is piecewise 

affine and continuous in θ  on *Θ . 



49 
 

 

Proof. See Bemporad et al (2002) and Tondel et al (2003). 

 

 

To choose an active set A allows selecting a linear sub-system of equality constraints from the 

KKT conditions for calculating the optimal values of ( , )x λ .  If A  is an optimal active set for 

*∈Θθ  then we have: 

*

*

( )

( )

′ − −      
= +      

      

H A h Fx θ
θ

A 0 b Sλ θ

A

A A A

. 

This equation system can be solved by the standard null space method. 

 

Proposition E2. Optimal solutions and critical regions. 

Let consider problem QP(θ ) and an arbitrary active set A. Let M A  denote the cardinality of A 

and \≡AN C A . Let assume that A satisfies the LICQ condition and that H is positive 

definite. Let ( )N N M× −∈Z ℝ A

A  be a matrix whose column spans the null space of A A  and let 

N M×∈Y ℝ A

A  be a matrix such that [  ]Z YA A  is non-singular. 

Then, for any *∈Θθ  such that A is an optimal active set: 

(a) the optimal solutions in s and in λ  to the KKT conditions are unique and defined by: 

*

*

( )

( )

x x

λ λ

 = +


= +

x θ K θ κ

λ θ K θ κ

A A A

A A A

 

where: 

( )
( )

1 1 1

1 1 1

1

1

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

x

x

x

x

λ

λ

− − −

− − −

−

−

 ′ ′≡ − +

 ′ ′ ′ ′≡ − −


′≡ − +


′≡ − +

K Y A Y S Z Z HZ Z F HY A Y S

κ Y Z Z HZ Z HY A Y b Z Z HZ Z h

K A Y Y HK F

κ A Y Y Hκ h

A A A A A A A A A A A A A

A A A A A A A A A A A A A A

A A A A A

A A A A A
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(b) the active set A is the unique optimal active set in the interior in the critical region defined 

by: 

*{ : }CR ≡ ∈Θ ≤θ G θ gA A A  

where: 

( )

x

λ
∩

 −
≡  
  

A K S
G

K
A AN A N

A J A

  and  
( )

x

λ
∩

 −
≡  
  

b A κ
g

κ

A AN N A

A

A J A

. 

 

Proof. See Tondel et al (2003). Note that these authors do not assume that H is positive 

definite but rather assume that 0′ >Z HZA A . 

 

 

This proposition has two main implications. First, to know the optimal active set associated to 

any *∈Θθ , i.e. * ( )θA , allows easily computing the solutions to problem QP(θ ). It suffices to 

use the formulas for *
*

( )
( )

θ
x θ

A
 and *

*

( )
( )

θ
λ θ

A
. Second, there exists a unique polyhedral 

partition of the feasible parameter space *Θ such that the interior of each polyhedral subset of  

*Θ  contains the parameters θ  for which a given active set is the unique optimal active set. 

This polyhedral partition of *Θ offers a full characterization of the optimal active sets 

associated to the solutions to problem QP(θ ). Once this polyhedral partition of *Θ  is known, 

to obtain the solutions problem QP(θ ) just requires (a) simple evaluations aimed at 

identifying the unique optimal active set of θ  and then (b) to apply the corresponding 

formulas to obtain * ( )x θ  and * ( )λ θ , and thus * ( )V θ . Bemporad et al (2002), Tondel et al 

(2003) or Gupta et al (2011) propose algorithms aimed at characterizing the relevant partition 

of *Θ . 
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The matrices  ZA  and YA  can be chosen such that 1( )−A YA A  is easily obtained. This can 

be done by choosing a QR characterization of ′A A , i.e.: 

1, 2, 1,

 ′  = =  
 

R
A P Q Q Q R

0A A A A   with  1, 2, ≡    Y Z Q QA A A A , 

where P is a permutation matrix (and where 2,Q A  and 0 may be “empty”). 

 

If the (LICQ) condition doesn’t hold for some * ( )θA  then the solution in λ  to the KKT 

conditions is not unique and several optimal combinations of active constraints exist. This 

difficulty can be overcome either by suitably removing redundant constraints or use 

projections in the ( , )θ λ -space.  In this last solution option, the set * ( )λ θ  can be characterized 

as a polyhedron in the ( , )θ λ -space. 

 

Proposition E3. Multiple solutions in λ . 

Let consider problem QP(θ ) and an arbitrary active set A. Let M A  denote the cardinality of A 

and \≡AN C A . Let assume H is positive definite and that A doesn’t satisfy the LICQ 

condition. Let ZC

A  be a matrix whose column spans the null space of ′A A  and let YC

A  be a 

matrix such that [  ]Z YC C

A A  is non-singular. 

Then, for any *∈Θθ  such that A is an optimal active set: 

(a) The optimal solutions in λ  to the KKT conditions are charcterized by: 

* , ,( ) λ λ= + +λ θ K θ κ Z µC C C

A A A A  

where: 

, 1

, 1

( ) ( )

( ) ( )

x

x

λ

λ

−

−

′ ′ ′ ≡ − +


′ ′ ′≡ − +

K Y Y A Y Y HK F

κ Y Y A Y Y Hκ h

C C C

A A A A A A A

C C C

A A A A A A A

  

and where µ  is any vector such that: 
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, ,( ) ( ) ( )λ λ
∩ ∩ ∩+ + ≥K θ κ Z µ 0C C C

A J A A J A A J A . 

(b) The active set A is optimal in the interior of the projection of 

*

, ,

( )

( ) ( ) ( )λ λ
∩ ∩ ∩

 − − ≤


+ + ≥

A x θ b S θ 0

K θ κ Z µ 0
A A AN A N N

C C C

A J A A J A A J A

 

onto the θ -space. 

 

Proof. See Tondel et al (2003). 

 

 

E.2.2. Sensitivity analysis results for a class of parametric quadratic problems 

Berkelaar et al (1997) consider (among other problems) the following parametric quadratic 

programming problem: 

( , )Pθ ϑ :  ( )min { ( ) 1/ 2 }hϑ θ∈ ′ ′+ × + ×x x h δ x HxF  

where: 

( ) { :  and }N
hϑ ϑ≡ ∈ = + × ≥x Ax b δ x 0ℝF . 

and: 

,  for b c c b cb cϑ ϑδ′= + × ⇔ = + ∈Ax b δ a x C . 

Their theorems 50 and 58 provide the left- and right-derivatives in ( , )θ ϑ  of the value 

function of problem ( , )Pθ ϑ : 

( )( , ) min { ( ) 1/ 2 }o
hW ϑθ ϑ θ∈ ′ ′≡ + × + ×x x h δ x HxF  

assuming that the feasible set ( )θF  has a non-empty interior and that H is positive 

semidefinite.  

The next proposition collects the results of theorems 50 and 58 in Berkelaar et al (1997). 
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Proposition E4. Value function directional derivatives. 

Let consider problem ( , )Pθ ϑ  and let assume that ( )θF  has a non-empty interior and that H is 

positive semidefinite. Let ( , )D θ ϑ  denote the Wolfe-dual problem associated to problem ( , )Pθ ϑ : 

( , )D θ ϑ :  ( , , ) ( , )max { ( ) 1/ 2 }bθ ϑ∈ ′ ′+ × − ×x λ µ c λ b δ x HxG  

where: 

2( ) {( , , ) :  and }N C
hθ θ′≡ ∈ × − + + = + × ≥x λ µ Hx λ A µ h δ λ 0ℝ ℝG . 

and let ( , )o θ ϑL  be the solution set in ( , , )x λ µ  to ( , )D θ ϑ . Let ( , )θ ϑS  denote the (possibly empty) 

subset of {1,..., }N≡N  defined by: 

( , ) { : ( , , ) ( , ) : 0}o
n nn xθ ϑ θ ϑ λ≡ ∈ ∃ ∈ = =x λ µS N L . 

 (a) The KKT conditions characterizing the solutions in ( , , )x λ µ  to problem ( , )D θ ϑ  are: 

( )

( )

,  ,  0

h

b

θ
ϑ

′+ × + − − =
 − + × =
 ′≥ ≥ =

h δ Hx A µ λ 0

Ax b δ 0

λ 0 x 0 x λ

 

 (b) Let ( , , ) ( ,0)o o o o θ∈x λ µ L , then the derivatives of ( ,0)oW θ  in θ  at ( ,0)θ  satisfy: 

( ,0)( , , ) ( ,0)
( ,0) min {   s.t.  0,  0 for }o

o o o
h n nW x n θθθ

θ λ∂
− ∈∂

′ ′ ′= = = = = ∈
x λ µ

δ x λ x x λ
L

S  

and: 

( ,0)( , , ) ( ,0)
( ,0) max {   s.t.  0,  0 for }o

o o o
h n nW x n θθθ

θ λ∂
+ ∈∂

′ ′ ′= = = = = ∈
x λ µ

δ x λ x x λ
L

S . 

(c) Let ( , , ) (0, )o o o o ϑ∈x λ µ L , then the derivatives of (0, )oW ϑ  in ϑ  at (0, )ϑ  satisfy: 

(0, )( , , ) (0, )
(0, ) min {   s.t.  0,  0 for }o

o o o
b n nW x n ϑϑθ

ϑ λ∂
− ∈∂

′ ′ ′= = = = = ∈
x λ µ

δ µ λ x x λ
L

S  

and: 

(0, )( , , ) (0, )
(0, ) max {   s.t.  0,  0 for }o

o o o
b n nW x n ϑϑθ

ϑ λ∂
+ ∈∂

′ ′ ′= = = = = ∈
x λ µ

δ µ λ x x λ
L

S . 

 

Proof. See Berkelaar et al (1997), theorems 50 and 58. 
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The next proposition is a corollary to Proposition E4. The directional derivative results given 

in this last proposition provide the left- and right- partial derivatives of  (0,0)oW  in the 

elements of( , )h b . 

 

Let now consider the parametric quadratic programming problem: 

( , )Ph b :  min { 1/ 2  s.t.  and }′ ′+ × ≥ =x x h x Hx x 0 Ax b , 

its value function: 

( , ) min { 1/ 2  s.t.  and }oV ′ ′≡ + × ≥ =xh b x h x Hx x 0 Ax b  

and its associated Wolfe-dual problem: 

( , )D h b :  ( , , )max { 1/ 2  s.t.  and }′ ′ ′− × ≥ − + + =x λ µ λ b x Hx λ 0 Hx λ A µ h . 

 

Proposition E5. Value function partial derivatives. 

Let consider problem ( , )Ph b  and its Wolfe-dual problem ( , )D h b . Let assume that the feasible set 

( , ) { :  and }N≡ ∈ ≥ =h b x x 0 Ax bℝF  has a non-empty interior and that H is positive definite. 

Let 2( , )o N C
+⊂ ×h b ℝ ℝL  denote the solution set in ( , , )x λ µ  to problem ( , )D h b . Let ( , )θ ϑS  

denote the (possibly empty) subset of {1,..., }N≡N  defined by: 

( , ) { : ( , , ) ( , ) : 0}o
n nn xθ ϑ λ≡ ∈ ∃ ∈ = =x λ µ h bS N L . 

 (a) The KKT conditions characterizing the solutions in ( , , )x λ µ  to problem ( , )D h b  are: 

,  ,  0

′+ − − =
 − =
 ′≥ ≥ =

h Hx A µ λ 0

Ax b 0

λ 0 x 0 x λ

 



55 
 

(b) The solution in x to problems ( , )Ph b  and ( , )D h b  is unique. Let ox  denote this solution. 

( , )o h bL  can be defined as { } ( , )o o×x h bM  where ( , )o N C
+⊂ ×h b ℝ ℝM . 

(c) Let ( , ) ( , )o o o∈λ µ h bM , then the derivatives of ( , )oV h b  in nh  at ( , )h b  satisfy: 

( , ) ( , ) ( , )
nn n

o o o o
n hh h

V V x V− +
∂ ∂ ∂

∂∂ ∂
= = =h b h b h b . 

(d) Let ( , ) ( , )o o o∈λ µ h bM , then the derivatives of ( , )oV h b  in cb  at ( , )h b  satisfy: 

( , )( , ) ( , )
( , ) min {   s.t.  0 and 0 for }o

c

o o
c nb

V nµ λ−
∂

∈∂
′= = = ∈ h bλ µ h b

h b λ x
M

S  

and: 

( , )( , ) ( , )
( , ) max {   s.t.  0 and 0 for }o

c

o o
c nb

V nµ λ+
∂

∈∂
′= = = ∈ h bλ µ h b

h b λ x
M

S . 

 

Proof. Problem ( , )Ph b  is strictly convex since it involves linear constraints only and H is 

definite positive. It is also strongly dual because its feasible set ( , )h bF  has a non-empty 

interior. These properties of problem ( , )Ph b  ensure results (a) and (b). Results (b)-(d) are direct 

applications of Proposition E4.  

QED. 

 

 

If the solution in cµ  to problem ( , )D h b  is unique then: 

( , ) ( , ) ( , )
cc c

o o o o
c bb b

V V Vµ− +
∂ ∂ ∂

∂∂ ∂
= = =h b h b h b . 
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