Know more

About cookies

What is a "cookie"?

A "cookie" is a piece of information, usually small and identified by a name, which may be sent to your browser by a website you are visiting. Your web browser will store it for a period of time, and send it back to the web server each time you log on again.

Different types of cookies are placed on the sites:

  • Cookies strictly necessary for the proper functioning of the site
  • Cookies deposited by third party sites to improve the interactivity of the site, to collect statistics

Learn more about cookies and how they work

The different types of cookies used on this site

Cookies strictly necessary for the site to function

These cookies allow the main services of the site to function optimally. You can technically block them using your browser settings but your experience on the site may be degraded.

Furthermore, you have the possibility of opposing the use of audience measurement tracers strictly necessary for the functioning and current administration of the website in the cookie management window accessible via the link located in the footer of the site.

Technical cookies

Name of the cookie

Purpose

Shelf life

CAS and PHP session cookies

Login credentials, session security

Session

Tarteaucitron

Saving your cookie consent choices

12 months

Audience measurement cookies (AT Internet)

Name of the cookie

Purpose

Shelf life

atid

Trace the visitor's route in order to establish visit statistics.

13 months

atuserid

Store the anonymous ID of the visitor who starts the first time he visits the site

13 months

atidvisitor

Identify the numbers (unique identifiers of a site) seen by the visitor and store the visitor's identifiers.

13 months

About the AT Internet audience measurement tool :

AT Internet's audience measurement tool Analytics is deployed on this site in order to obtain information on visitors' navigation and to improve its use.

The French data protection authority (CNIL) has granted an exemption to AT Internet's Web Analytics cookie. This tool is thus exempt from the collection of the Internet user's consent with regard to the deposit of analytics cookies. However, you can refuse the deposit of these cookies via the cookie management panel.

Good to know:

  • The data collected are not cross-checked with other processing operations
  • The deposited cookie is only used to produce anonymous statistics
  • The cookie does not allow the user's navigation on other sites to be tracked.

Third party cookies to improve the interactivity of the site

This site relies on certain services provided by third parties which allow :

  • to offer interactive content;
  • improve usability and facilitate the sharing of content on social networks;
  • view videos and animated presentations directly on our website;
  • protect form entries from robots;
  • monitor the performance of the site.

These third parties will collect and use your browsing data for their own purposes.

How to accept or reject cookies

When you start browsing an eZpublish site, the appearance of the "cookies" banner allows you to accept or refuse all the cookies we use. This banner will be displayed as long as you have not made a choice, even if you are browsing on another page of the site.

You can change your choices at any time by clicking on the "Cookie Management" link.

You can manage these cookies in your browser. Here are the procedures to follow: Firefox; Chrome; Explorer; Safari; Opera

For more information about the cookies we use, you can contact INRAE's Data Protection Officer by email at cil-dpo@inrae.fr or by post at :

INRAE

24, chemin de Borde Rouge -Auzeville - CS52627 31326 Castanet Tolosan cedex - France

Last update: May 2021

Menu Logo Principal Institut Agro Rennes Angers Université Rennes Logo Igepp

Home page

Sorin Clément

Subcellular modification and nutrient remobilization during Brassica napus leaf senescence: effects of abiotic stresses

PhD defended december 10th, 2014
Direction: Alain Bouchereau & François Mariette

Abstract:

Brassica napus is one of the major oil crops of the world. Due to its low NUE (Nitrogen Use Efficiency) compared to other species, Nitrogen management presents a major economic and environmental goal for improvement of that crop production. As a component of NUE, nutrient remobilization from source to sink tissues takes place mainly during the leaf senescence and is associated to metabolic recycling processes and modification of the cellular organization and structure. The aim of this work was therefore to understand and estimate the amplitude of these structural modifications with the objective to appreciate through these processes remobilization performance according to oilseed rape genotypes and nutritional status in terms of nitrogen and water supply. The leaf structure was investigated through NMR relaxometry, providing access to cellular water status and distribution. The present work demonstrated that the transverse relaxation time (T2) distribution depends on both leaf tissue structure and cellular compartmentalization. The study revealed a process of cell enlargement and hydration during leaf senescence, specifically in the palisade parenchyma and showed that the T2 relaxation time was able to discriminate parenchyma tissues at an early phase of senescence induction. Moreover, the NMR relaxometry signal was shown to reflect specific chronological loss of sub-cellular structuring all along the senescence process progression and was demonstrated to be an accurate non-invasive monitoring method of leaf development. Finally, plant nutrition status experienced through nitrogen and water availability limitation has been demonstrated to strongly affect regular sequential leaf senescence. Consequences on remobilization efficiency by stress conditions have been also assessed through the NMR signal. This work has improved the understanding of leaf structure and functioning at the cell and tissue levels after the onset and during the progression of senescence. Moreover, it was demonstrated that NMR relaxometry provides access to leaf structural information that are not accessible with currently used techniques for plant structural investigations. One of the main applications would be for plant phenotyping, especially for selecting genotypes with higher nutrient remobilization efficiency especially under environmental stresses like nitrogen and water limitations for sustainable oil and protein production.