Know more

Our use of cookies

Cookies are a set of data stored on a user’s device when the user browses a web site. The data is in a file containing an ID number, the name of the server which deposited it and, in some cases, an expiry date. We use cookies to record information about your visit, language of preference, and other parameters on the site in order to optimise your next visit and make the site even more useful to you.

To improve your experience, we use cookies to store certain browsing information and provide secure navigation, and to collect statistics with a view to improve the site’s features. For a complete list of the cookies we use, download “Ghostery”, a free plug-in for browsers which can detect, and, in some cases, block cookies.

Ghostery is available here for free: https://www.ghostery.com/fr/products/

You can also visit the CNIL web site for instructions on how to configure your browser to manage cookie storage on your device.

In the case of third-party advertising cookies, you can also visit the following site: http://www.youronlinechoices.com/fr/controler-ses-cookies/, offered by digital advertising professionals within the European Digital Advertising Alliance (EDAA). From the site, you can deny or accept the cookies used by advertising professionals who are members.

It is also possible to block certain third-party cookies directly via publishers:

Cookie type

Means of blocking

Analytical and performance cookies

Realytics
Google Analytics
Spoteffects
Optimizely

Targeted advertising cookies

DoubleClick
Mediarithmics

The following types of cookies may be used on our websites:

Mandatory cookies

Functional cookies

Social media and advertising cookies

These cookies are needed to ensure the proper functioning of the site and cannot be disabled. They help ensure a secure connection and the basic availability of our website.

These cookies allow us to analyse site use in order to measure and optimise performance. They allow us to store your sign-in information and display the different components of our website in a more coherent way.

These cookies are used by advertising agencies such as Google and by social media sites such as LinkedIn and Facebook. Among other things, they allow pages to be shared on social media, the posting of comments, and the publication (on our site or elsewhere) of ads that reflect your centres of interest.

Our EZPublish content management system (CMS) uses CAS and PHP session cookies and the New Relic cookie for monitoring purposes (IP, response times).

These cookies are deleted at the end of the browsing session (when you log off or close your browser window)

Our EZPublish content management system (CMS) uses the XiTi cookie to measure traffic. Our service provider is AT Internet. This company stores data (IPs, date and time of access, length of the visit and pages viewed) for six months.

Our EZPublish content management system (CMS) does not use this type of cookie.

For more information about the cookies we use, contact INRA’s Data Protection Officer by email at cil-dpo@inra.fr or by post at:

INRA
24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan CEDEX - France

Dernière mise à jour : Mai 2018

Menu Logo Principal Agrocampus Ouest Rennes 1 University Logo Igepp

Home page

Resistance and Durability• RD Team

Bandeau accueilo RD

Context and stakes

In order to address the urgent need of pesticides reduction in agriculture, plant genetic resistance is an essential lever for crop protection against diseases and pests. The development of durable resistant varieties to multiple diseases and pests is therefore a major challenge for a productive, healthy and sustainable low-input agriculture. Diversifying resistance sources and exploiting quantitative resistance are major research strategies for developing durable resistances.

Potato, which is the fourth crop in the world, faces a great number of pathogens, including late blight disease which is controlled by a high level of fungicides (mean fungicide TFI of 10 in 2017), and cyst nematodes which are more and more difficult to manage with the withdrawal of the most effective nematicides.

Grain legumes, with their nitrogen-fixing ability and protein-rich seeds, are of major interest in agroecological cropping systems. Aphanomyces root rot has been a major concern of pulse growers for >20 years in absence of efficient control methods. Pests have become more damaging due to the reduced use of pesticides.

Objectives 

The general objective of the team is to identify, compare and combine genetic and molecular determinants of quantitative resistance to multiple pests, and identify strategies for their integration with other control methods for their sustainable management. The team is developing research activities on economically important diseases and/or pests of the annual crops of grain legumes and potato.
The team develop research in three interconnected axes, from the gene, through the plant to the plot.

  • Axis 1. Genetics and mechanisms of plant responses to diseases and pests
    The work developed aims to (i) identify genes, defense pathways, chemical signals associated with resistance QTL, (ii) study the conservation of quantitative resistance genes and mechanisms between species and (iii) identify regions of the genome, genes and mechanisms controlling resistance to multiple pests.
  • Axis 2. Diversity and combination of plant resistance loci to multiple diseases and pests
    The work developed aims to (i) identify effective sources of resistance against virulent pathogen populations, (ii) identify the action modes and spectra of resistance QTL on pathogen cycles and populations, and combine them to create durable resistance and (iii) develop new schemes and genomic prediction models for the breeding of quantitative resistance.
  • Axis 3. Integration of genetic resistance to other plant protection levers
    The work developed aims to assess the durability of quantitative resistance (i) in cropping systems diversified in hosts and (ii) in combination with other control methods (prophylaxis, cultural practices, biocontrol).

Competences and expertise

The team brings together a group of about 25 people, with skills in quantitative genetics, plant breeding, biotechnology, molecular biology, microbiology, plant production and experimentation, disease resistance tests in controlled and field conditions. It hosts the potato genetic resources from the BrACySol BRC and pea genetic resources for diseases and pest studies. The team has national and international recognized expertise on genetics and pre-breeding for resistance to diseases in potato and grain legumes. Its expertise is mobilized in the Potato and Pulse sections of the French varietal registration authorities (CTPS).