Know more

Our use of cookies

Cookies are a set of data stored on a user’s device when the user browses a web site. The data is in a file containing an ID number, the name of the server which deposited it and, in some cases, an expiry date. We use cookies to record information about your visit, language of preference, and other parameters on the site in order to optimise your next visit and make the site even more useful to you.

To improve your experience, we use cookies to store certain browsing information and provide secure navigation, and to collect statistics with a view to improve the site’s features. For a complete list of the cookies we use, download “Ghostery”, a free plug-in for browsers which can detect, and, in some cases, block cookies.

Ghostery is available here for free:

You can also visit the CNIL web site for instructions on how to configure your browser to manage cookie storage on your device.

In the case of third-party advertising cookies, you can also visit the following site:, offered by digital advertising professionals within the European Digital Advertising Alliance (EDAA). From the site, you can deny or accept the cookies used by advertising professionals who are members.

It is also possible to block certain third-party cookies directly via publishers:

Cookie type

Means of blocking

Analytical and performance cookies

Google Analytics

Targeted advertising cookies


The following types of cookies may be used on our websites:

Mandatory cookies

Functional cookies

Social media and advertising cookies

These cookies are needed to ensure the proper functioning of the site and cannot be disabled. They help ensure a secure connection and the basic availability of our website.

These cookies allow us to analyse site use in order to measure and optimise performance. They allow us to store your sign-in information and display the different components of our website in a more coherent way.

These cookies are used by advertising agencies such as Google and by social media sites such as LinkedIn and Facebook. Among other things, they allow pages to be shared on social media, the posting of comments, and the publication (on our site or elsewhere) of ads that reflect your centres of interest.

Our EZPublish content management system (CMS) uses CAS and PHP session cookies and the New Relic cookie for monitoring purposes (IP, response times).

These cookies are deleted at the end of the browsing session (when you log off or close your browser window)

Our EZPublish content management system (CMS) uses the XiTi cookie to measure traffic. Our service provider is AT Internet. This company stores data (IPs, date and time of access, length of the visit and pages viewed) for six months.

Our EZPublish content management system (CMS) does not use this type of cookie.

For more information about the cookies we use, contact INRA’s Data Protection Officer by email at or by post at:

24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan CEDEX - France

Dernière mise à jour : Mai 2018

Menu Logo Principal Rennes 1 University Logo Igepp

Home page


European agriculture will require crop varieties adapted to changes in temperature and water availability. Yield stability is highly dependent on the adaptability of key stages of plant development as root architecture, flowering date and pod shattering. SYBRACLIM intends to evaluate and improve the genetic and physiological basis of control of these traits under stress conditions

Sybraclim Project


Context and Issues

Extreme and variable climate conditions are expected to be more frequent worldwide in the near future. These climatic fluctuations will have serious effects on crop productivity that will be mediated by alterations in different plant developmental processes. European agriculture is facing the crucial challenge of adapting crop productivity to climate change and will need the development of crops with increased resilience to abiotic stress factors triggered by climate change. Crop yield stability is dependent on the response of key developmental programs to stress conditions. Delayed or accelerated flowering time, alteration of root architecture and growth, and disruption of pod-shattering are common responses displayed by crops exposed to high temperature or drought associated to climate change.


SYBRACLIM aims at evaluating the impact of these environmental factors on developmental processes directly influencing crop yield and shedding light on the genetic and molecular bases of the tolerance of different varieties of Europe’s premium oilseed crop, oilseed rape (Brassica napus) to increasing growth temperature and water stress.

Rapeseed is one of the world’s most important sources of high-quality vegetable oils for human nutrition and biofuels, and particularly in Europe is also a major contributor to vegetable protein diets of ruminant livestock. Because these high value traits are contributed by the seeds, any abiotic stresses that impact flowering, fertilization, biosynthesis of seed storage compounds during maturation, or loss of seeds before/during harvest, have a high impact on oil and/or protein yields and a substantial economic relevance.


SYBRACLIM will implement a multidisciplinary and innovative approach to characterize the phenotypic changes related to flowering time, root development and pod shattering in response to increased average temperature and drought and to analyse the productivity (yield and oil and protein content) in varieties of rapeseed.We will also use genomics-assisted selection of stress-tolerance traits in controlled environments and field trials. The relationship between performance and variability of the studied developmental processes will allow us to identify new genetic traits associated with adaptation and use them to design stress tolerant rapeseed crops by complementary plant breeding and biotechnology strategies. Finally, we will integrate all these environmental, phenotypic and productivity data in models that will assess the performance of the rapeseed varieties across different climate conditions.

These models are also intended to predict the optimal crops available to respond to changing climate and provide information about their expected performance in several agricultural scenarios. Because breeders need decades to develop new varieties, this approach could enable anticipatory breeding for early development of germplasm carrying the necessary genetic variation to cope with future climatic changes. Since SYBRACLIM will also introduce changes in crop management in the models (e.g. changes in sowing date and fertilization), we will provide vital information that could be used by farmers to design the better strategies to adapt their agricultural systems to climate conditions and contribute to secure yield of Brassica crops.


The SYBRACLIM consortium is multidisciplinary and intersectorial, and includes both commercial breeding companies and leading research groups with high complementarities that cover the fields of genetics, genomics, physiology and breeding in Brassica crops along with climatic modeling of crop performance.

  • INIA, Syngenta and Euralis: plant growth facilities (2000 m2); Rapeseed elite varieties and hybrids; Yield data of varieties in a range of environmental conditions (Monica Pernas Ochoa, Coord.).
  • JIC-Limagrain: Rapeseed TILLING platform and mapping populations (Lars Ostregaard).
  • JLU Giessen: Segregating plant populations; 60k SNP Brassica napus genotyping array; extensive field data; large-container system for stress phenotyping under controlled but “field-like” conditions (Rod Snowdon).
  • NPZ Innovation GmbH: Elite breeding varieties and hybrids, field trial network covering diverse climatic scenarios (Gunhil Leckband).
  • AU: regional variety trial data; crop models; access to climate change scenarios (Jorgen Olesen).
  • INRA: segregating plant populations complementary to Giessen; plant growth controlled conditions and in “field-like” conditions equipment; metabolomic profiling (Alain Bouchereau, Nathalie Nesi)
  • GCRC: crop modelling, rapaseed database (including high-quality weather data and soil and water use dataset under field conditions) (Miroslav Trnka).

Funding and Support

Funding by Agence Nationale de la Recherche (ANR)