Know more

About cookies

What is a "cookie"?

A "cookie" is a piece of information, usually small and identified by a name, which may be sent to your browser by a website you are visiting. Your web browser will store it for a period of time, and send it back to the web server each time you log on again.

Different types of cookies are placed on the sites:

  • Cookies strictly necessary for the proper functioning of the site
  • Cookies deposited by third party sites to improve the interactivity of the site, to collect statistics

Learn more about cookies and how they work

The different types of cookies used on this site

Cookies strictly necessary for the site to function

These cookies allow the main services of the site to function optimally. You can technically block them using your browser settings but your experience on the site may be degraded.

Furthermore, you have the possibility of opposing the use of audience measurement tracers strictly necessary for the functioning and current administration of the website in the cookie management window accessible via the link located in the footer of the site.

Technical cookies

Name of the cookie

Purpose

Shelf life

CAS and PHP session cookies

Login credentials, session security

Session

Tarteaucitron

Saving your cookie consent choices

12 months

Audience measurement cookies (AT Internet)

Name of the cookie

Purpose

Shelf life

atid

Trace the visitor's route in order to establish visit statistics.

13 months

atuserid

Store the anonymous ID of the visitor who starts the first time he visits the site

13 months

atidvisitor

Identify the numbers (unique identifiers of a site) seen by the visitor and store the visitor's identifiers.

13 months

About the AT Internet audience measurement tool :

AT Internet's audience measurement tool Analytics is deployed on this site in order to obtain information on visitors' navigation and to improve its use.

The French data protection authority (CNIL) has granted an exemption to AT Internet's Web Analytics cookie. This tool is thus exempt from the collection of the Internet user's consent with regard to the deposit of analytics cookies. However, you can refuse the deposit of these cookies via the cookie management panel.

Good to know:

  • The data collected are not cross-checked with other processing operations
  • The deposited cookie is only used to produce anonymous statistics
  • The cookie does not allow the user's navigation on other sites to be tracked.

Third party cookies to improve the interactivity of the site

This site relies on certain services provided by third parties which allow :

  • to offer interactive content;
  • improve usability and facilitate the sharing of content on social networks;
  • view videos and animated presentations directly on our website;
  • protect form entries from robots;
  • monitor the performance of the site.

These third parties will collect and use your browsing data for their own purposes.

How to accept or reject cookies

When you start browsing an eZpublish site, the appearance of the "cookies" banner allows you to accept or refuse all the cookies we use. This banner will be displayed as long as you have not made a choice, even if you are browsing on another page of the site.

You can change your choices at any time by clicking on the "Cookie Management" link.

You can manage these cookies in your browser. Here are the procedures to follow: Firefox; Chrome; Explorer; Safari; Opera

For more information about the cookies we use, you can contact INRAE's Data Protection Officer by email at cil-dpo@inrae.fr or by post at :

INRAE

24, chemin de Borde Rouge -Auzeville - CS52627 31326 Castanet Tolosan cedex - France

Last update: May 2021

Menu Logo Principal Institut Agro Rennes Angers Rennes 1 University Logo Igepp

Home page

Seed quality in B. napus

The increased production of rapeseed oil is a major goal and can go through the increase of seed yield and / or oil content in the seed. In addition, the competitiveness of the rapeseed crop will be achieved only if the energy cost of production (inputs, extraction process) is reduced and balanced by a high added value of the co-products.

Research and main results

Genetic and functional analyses of seed oil content

Oil seed content trait is under complex genetic determinism: 14 genomic regions were identified in the 'Darmor-bzh x Yudal' doubled haploid population (Delourme et al. 2006). Molecular markers were developed to refine the targeted regions based on candidate genes, the Brassica/Arabidopsis synteny and more recently the sequencing data from the Brassica genomes. In addition, an initial characterization of genetic diversity for the oil content has been initiated using a panel of around 100 rapeseed accessions and will help to bring results on the validation of targeted regions.

programme2

Impact of the composition and/or structure of the oil bodies on seed crushing ability

Better knowledge of the biogenesis and the accumulation of the oil bodies (OBs) would provide keys to modify their stability and therefore to facilitate the oil extraction process. To this purpose an exhaustive description of the protein composition from rapeseed OBs was achieved by combination of proteomic and genomic tools. Genomic analysis led to the identification of major proteins, including oleosins, steroleosins and caleosins. Alignments of amino acid sequences revealed a high level of conservation between Arabidopsis and Brassica napus. Future work will include the production and analysis of transgenic rapeseeds with modified expression of OB protein genes.

Biochemical and molecular analyses of flavonoid metabolism in rapeseed

The profiling of seed coat flavonoids by LC-ESI-MSn was established in 8 black-seeded B. napus genotypes, during seed development (Auger et al. 2010). Sixteen different flavonoids including (-)-epicatechin, procyanidins and flavonols were identified and quantified. High amounts of PCs accumulated in the seed coat, with solvent-soluble polymers of (-)-epicatechin reaching up to 10% of the seed coat weight during seed maturation. In addition, variability for both PC and flavonol contents was observed within the different genotypes. In parallel, a cadidate gene approach was initiated. The orthologs of seven Arabidopsis TRANSPARENT TESTA (TT) were cloned in B. napus. A comparative genomic study revealed (1) a high conservation in the amino acid sequences between the Brassicacea and (2) a syntenic location on the respective genomic sequences. Finally, the activation profile of the promotors Bna.BAN was monitored in planta with « promotor-reporter » fusions in rapeseed and in Arabidopsis (Auger et al., 2009; Nesi et al., 2009).

Left panel: Time course accumulation of procyanidins in rapeseed Right panel: Procyanidin content in black and yellow seeded rapeseed lines

Main references

Jolivet et al. Deciphering the structural organization of the oil bodies in the Brassica napus seed as a mean to improve the oil extraction yield. Industrial Crops and Products 44 (2013) 549-557. DOI

Jolivet et al. Oil body proteins sequentially accumulate throughout seed development in Brassica napus. J Plant Physiol. 2011 Nov 15;168(17):2015-20. DOI

Auger B. et al. A detailed survey of seed coat flavonoids in developing seeds of Brassica napus L. J Agric Food Chem. 2010 May 26;58(10):6246-56. DOI

Auger B. et al. Brassica orthologs from BANYULS belong to a small multigene family, which is involved in procyanidin accumulation in the seed. Planta. 2009 Nov;230(6):1167-83. DOI

Nesi N. et al. The promoter of the Arabidopsis thaliana BAN gene is active in proanthocyanidin-accumulating cells of the Brassica napus seed coat. Plant Cell Rep. 2009 Apr;28(4):601-17. DOI

Jolivet P. et al. Protein composition of oil bodies from mature Brassica napus seeds. Proteomics. 2009 Jun;9(12):3268-84. DOI 

Nesi N. et al. Genetic and molecular approaches to improve nutritional value of Brassica napus L. seed. C R Biol. 2008 Oct;331(10):763-71. DOI

Delourme R. et al. Genetic control of oil content in oilseed rape (Brassica napus L.). Theor Appl Genet. 2006 Nov;113(7):1331-45.

Lepiniec L. et al. Genetics and biochemistry of seed flavonoids. Annu Rev Plant Biol. 2006;57:405-30. Review

Collaborations

  • UMR1318 IJPB, INRA Versailles – AgroParisTech, France
  • UR117 Cidricoles, Biotransformation des Fruits et Légumes, INRA Rennes, France
  • UR1268 Biopolymères Interactions Assemblages, INRA Nantes, France
  • CNRGV Centre National de Ressources en Génomique Végétale, INRA Toulouse, France
  • UMR1165 Génomique Végétale, INRA Evry – CNRS, France
  • Plate-forme d'Histo-pathologie / IFR140, Univ. Rennes1, France
  • Biogemma, Mondonville et Clermont-Ferrand, France
  • CETIOM, Pessac, France
  • Univ. Bielefeld, Germany
  • Univ. Giessen, Germany

Fundings/Projects

  • OSRCROP (ANR Genoplante 2006-2008): « Carbon balance in seed filling of oilseed rape (Brassica napus) - Controlling reserve accumulation in oil and protein » (coordination J. Wilmer, Biogemma)
  • GENEBODIES (ANR Genoplante 2006-2008): « Structural and functional study of oil and protein storage bodies in A. thaliana and B. napus: towards environmental friendly oil and protein extraction process» (coordination T. Chardot, INRA Versailles)
  • GENERGY (ANR Genoplante 2008-2012): « Improvement of the oil yield of the rapeseed crop in the context of bio fuel production » (coordination N. Nesi, INRA Rennes)
  • RAPSODYN (Investissements d’Avenir 2012-2019): « Optimisation of the rapeseed oil content and yield under low nitrogen input : improving breeding of adapted varieties using genetics and genomics» (coordination N. Nesi, INRA Rennes)