Know more

Our use of cookies

Cookies are a set of data stored on a user’s device when the user browses a web site. The data is in a file containing an ID number, the name of the server which deposited it and, in some cases, an expiry date. We use cookies to record information about your visit, language of preference, and other parameters on the site in order to optimise your next visit and make the site even more useful to you.

To improve your experience, we use cookies to store certain browsing information and provide secure navigation, and to collect statistics with a view to improve the site’s features. For a complete list of the cookies we use, download “Ghostery”, a free plug-in for browsers which can detect, and, in some cases, block cookies.

Ghostery is available here for free:

You can also visit the CNIL web site for instructions on how to configure your browser to manage cookie storage on your device.

In the case of third-party advertising cookies, you can also visit the following site:, offered by digital advertising professionals within the European Digital Advertising Alliance (EDAA). From the site, you can deny or accept the cookies used by advertising professionals who are members.

It is also possible to block certain third-party cookies directly via publishers:

Cookie type

Means of blocking

Analytical and performance cookies

Google Analytics

Targeted advertising cookies


The following types of cookies may be used on our websites:

Mandatory cookies

Functional cookies

Social media and advertising cookies

These cookies are needed to ensure the proper functioning of the site and cannot be disabled. They help ensure a secure connection and the basic availability of our website.

These cookies allow us to analyse site use in order to measure and optimise performance. They allow us to store your sign-in information and display the different components of our website in a more coherent way.

These cookies are used by advertising agencies such as Google and by social media sites such as LinkedIn and Facebook. Among other things, they allow pages to be shared on social media, the posting of comments, and the publication (on our site or elsewhere) of ads that reflect your centres of interest.

Our EZPublish content management system (CMS) uses CAS and PHP session cookies and the New Relic cookie for monitoring purposes (IP, response times).

These cookies are deleted at the end of the browsing session (when you log off or close your browser window)

Our EZPublish content management system (CMS) uses the XiTi cookie to measure traffic. Our service provider is AT Internet. This company stores data (IPs, date and time of access, length of the visit and pages viewed) for six months.

Our EZPublish content management system (CMS) does not use this type of cookie.

For more information about the cookies we use, contact INRA’s Data Protection Officer by email at or by post at:

24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan CEDEX - France

Dernière mise à jour : Mai 2018

Menu Logo Principal Institut Agro Rennes Angers Rennes 1 University Logo Igepp

Home page


Chromatin remodeling in regulation of chromosomal Crossing-Over and seed production


Crossing-Over (CO) during meiosis is a fundamental process ensuring sexual transmission of genetic material to next generation and meanwhile generating diversity within species by creating new chromosome/allele combinations. Understanding the mechanisms that regulate CO frequency has great interest in basic research as well as in breeding. Intensive studies over the past decades have identified a number of genes involved in meiosis regulation in yeast, plants and animals. At the DNA molecular level, the generation of double-strand-breaks (DSBs), the processes of homologous recombination and CO formation are relatively well described. Yet, at the physiological template chromatin level, the regulation of these critical meiotic events remains to be uncovered. The ChromCO project investigates functions of histone modifications and chromatin remodeling factors in regulating CO, meiosis and plant reproduction. This work involves two Brassicaceae species family: the plant model Arabidopsis thaliana and the major oleaginous crop Brassica napus (oilseed rape).


The aim of the ChromCO project is to finely characterize the ATP-dependent chromatin-remodeling factor (INO) that we recently showed to play a crucial role in repressing Crossing Over (CO) frequency in Arabidopsis. To this aim, the ChromCO project will combine multi-type approaches, including CRISPR-Cas9 gene editing, genetic mapping, mutant characterization, cytogenetics, immunostaining, microscopy, and genome-wide profiling.
The ChromCO project is expected to make following breakthroughs: i) A functional understanding of the importance of chromatin landscape and chromatin remodeling in CO formation and meiosis; ii) A mechanistic insight into the function of the INO gene in chromatin remodeling and CO regulation; iii) A genome-wide knowledge of CO distribution regulated by chromatin landscape and chromatin remodeling; iv) A comparative knowledge of similarities/specificities of chromatin regulation of COs between the diploid plant Arabidopsis thaliana (2n = 10) and the allotetraploid plant Brassica napus (AACC, 2n = 38).


  • IBMP Strasbourg (W-H. Shen)

  • INRAE IGEPP (A-M. Chèvre)
  • INRAE IJPB Versailles
  • Institut Jean-Pierre Bourgin (E. Jenczewski)

Site web