Introduction of genes into wheat and oilseed rape from related species | |
Research
Context and Issues
Genetic variability available in breeding is limited for some traits of wheat and oil seed rape. To overcome that limitation, transfer of genetic information from related species is the most appropriated method as far as the variation is large in those species.
Genes of interest may be present in the diploid progenitors of oilseed rape [B. rapa & B. oleracea] and bread wheat [T. urartu, Ae. speltoides, Ae. tauschii]. Transfer of these genes is mediated through homologous recombination. On the other hand, exploitation of more distant species may be laborious and unsuccessful since their genomes are homoeologous to those of the cultivated species and since events of homoeologous recombination in the interspecific hybrids and their progenies occur with a low frequency.
Achieved introgressions are far from being all utilisable by breeders. They may carry a huge amount of alien information and consequently carry genes with deleterious effect. If so, length of alien chromosomal segments has to be reduced.
Resistance to diseases is the major field of research in our unit and so we mainly focus our work on this trait.
Objectives
Introduction of new resistance genes from related species into oilseed rape and wheat.
Methodology
In oilseed rape:
transfers of specific resistances to blackleg caused by Leptosphaeria maculans from black mustard (Rlm10), brown mustard (Rlm6) and turnip (Rlm1, 7, 11)
In wheat:
- Optimal localization of an alien introgression : long arm 1RS of rye
- Exploitation of the genetic variability carried by the progenitor Aegilops tauschii, in bread wheat breeding
Transfer of the HMW glutenin locus on 1D of bread wheat onto 1A of durum wheat.
Main Results
In oilseed rape:
- Introduction of Rlm10 and Rlm6 from black and brown mustards using homoeologous recombination
- Introduction of Rlm1, 7, 11 in oilseed rape from turnip through homologous recombination.
In wheat:
- Development of translocations 1AS-1RL, 1AL-1RS, 1BL-1RS et 1BS-1RL
- Development of durum lines carrying the glutenin sub-unit 2-12 on the chromosome 1A.
Development of a prebreeding population and of AB-QTL populations derived from crosses between synthetic wheats and Elite wheats.
Partners
- GIS Club 5
- GIE Blé dur
- CETIOM
- UMR IGEPP (Team RA) Rennes
- UMR GDEC (INRAE Clermont-Ferrand)
- BIOGER (INRAE Grignon)
- University of Western Australia, Perth, Australia
Funding and Support
ANR Génoplante AvirLep (2008-2010) : A whole-genome-based search for Leptosphaeria maculans avirulence and aggressiveness genes to improve management of resistance genes of oilseed rape to stem canker disease
FSOV (2010-2013) : Evaluation et exploitation de translocations Blé-Seigle dans le blé tendre
FSOV (2012-2015) : Valorisation de nouveaux gènes de résistance et de qualité issus d’Aegilops tauschii
CASDAR (2012-2015) : Création et caractérisation de génotypes de blé dur introgressés de gluténines du blé tendre afin de sécuriser une haute qualité technologique sous fumure azotée limitante.
Publications
Balesdent Mh, Fudal I., Ollivier B., Bally P., Grandaubert J., Eber F., Chèvre A.M., Leflon M., Rouxel T., 2013.The dispensable chromosome of Leptosphaeria maculans shelters an effector gene conferring avirulence towards Brassica rapa. New Phytologist 198:887-898
Barloy D., Lemoine J., Abélard P., Tanguy A.M., Rivoal R., Jahier J. 2007. Marker-assisted pyramiding of two cereal cyst nematode resistance genes from Aegilops variabilis in wheat. Mol. Breeding 20: 31-40.
Barloy, D., Etienne, C., Lemoine, J., Saint-Ouen, Y., Jahier, J ;, Banks, P.M., Trottet, M. 2003. Comparison of TAF 46 and Zhong 5 resistances to barley yellow dwarf virus from Thinopyrum intermediumin wheat. Euphytica 129: 361-369.
Barret P., Guerif J., Reynoird J.P., Delourme R., , Eber F., Renard M., Chèvre A.M.,1998. Selection of stable Brassica napus-B. juncea recombinant lines resistant to blackleg (Leptosphaeria maculans) 2 : A ‘to and fro’ strategy to localise and characterise interspecific introgressions on B. napus genome. Theor. Appl. Genet. 96 : 1097-1103.
Bousset L., Chèvre A.M. 2012. Controlling cyclic epidemics on the crops of the agro-ecosystems: articulate all the dimensions in the formalisation, but look for a local solution. Journal of Botany, on line
Brun H., Chèvre A.M., Fitt B.DL, Powers S., Besnard A.L., Ermel M., Huteau V., Marquer B., Eber F., Renard M., Andrivon D. 2010. Quantitative resistance increases the durability of qualitative resistance to Leptosphaeria maculans in Brassica napus. New Phytologist 185: 285-299
Chèvre A.M., Barret P., Eber F., Dupuy P., Brun H., Tanguy X., Renard M., 1997. Selection of stable Brassica napus-B. juncea recombinant lines resistant to blackleg (Leptosphaeria maculans) 1 : Identification of molecular markers, chromosomal and genomic origin of the introgression. Theor. Appl. Genet. 95 : 1104-1111
Chèvre A.M., Eber F., This P., Barret P., Tanguy X., Brun H., Delseny M., Renard M., 1996. Characterization of Brassica nigra chromosomes and of blackleg resistance from B. nigra-B. napus addition lines. Plant Breeding 115: 113-118.
Chèvre A-M., Brun H., Eber F., Letanneur J-C., Vallee P., Ermel M., Glais I., Hua Li, Sivasithamparam K., Barbetti M.J., 2008. Stabilization of resistance to Leptosphaeria maculans in Brassica napus x B. juncea recombinant lines and its introgression into spring-type Brassica napus. Plant disease 92 (8): 1208-1214
Coriton O., Dominique Barloy, Virginie Huteau, Jocelyne Lemoine, Anne-Marie Tanguy and Joseph Jahier 2009.Assignment of Aegilops variabilis Eig chromosomes and translocations carrying resistance to nematodes in wheat. Genome 52:338-346.
Dumur J. , G. Branlard , A-M. Tanguy , M, Dardevet , O. Coriton , V. Huteau , J. Lemoine and J. Jahier Development of isohomoeoallelic lines within the wheat cv. Courtot for high molecular weight glutenin subunits. Transfer of the Glu-D1 locus to chromosome 1A. Theor. Appl. Genet. DOI: 10.1007/s00122-009-1053-y
Jahier J., F. Chain, D. Barloy, A. -M. Tanguy, J. Lemoine, G. Riault, E. Margalé, M. Trottet, E. Jacquot 2009.Effect of combining two genes for partial resistance to Barley yellow dwarf virus-PAV (BYDV-PAV) derived from Thinopyrum intermedium in wheat
Plant Pathology. Doi: 10.1111/j.1365-3059.2009.02084.x
Jubault, M., Tanguy A.M., Abélard, P., Coriton, O., Dusautoir, J.C., Jahier, J. 2006. Attempts to induce homoeologous pairing between wheat and Agropyron cristatum genomes. Genome 49, 190-193.
Leflon M., Brun H., Eber F., Delourme R., Lucas M.O., Vallée P., Ermel M., Balesdent M.H., Chèvre A.M., 2007. Detection, introgression and localization of genes conferring specific resistance to Leptosphaeria maculans from Brassica rapa into B. napus Theor. Appl. Genet. 115 : 897-906
Tanguy A.M., Coriton O., Abélard P., Dedryver F., Jahier J. 2004. Structure of the Aegilops ventricosa chromosome 6Nv, the donor to wheat of the genes Yr17, Lr37, Sr38 and Cre5. Genome 48:541-546.