En savoir plus

Notre utilisation de cookies

« Cookies » désigne un ensemble d’informations déposées dans le terminal de l’utilisateur lorsque celui-ci navigue sur un site web. Il s’agit d’un fichier contenant notamment un identifiant sous forme de numéro, le nom du serveur qui l’a déposé et éventuellement une date d’expiration. Grâce aux cookies, des informations sur votre visite, notamment votre langue de prédilection et d'autres paramètres, sont enregistrées sur le site web. Cela peut faciliter votre visite suivante sur ce site et renforcer l'utilité de ce dernier pour vous.

Afin d’améliorer votre expérience, nous utilisons des cookies pour conserver certaines informations de connexion et fournir une navigation sûre, collecter des statistiques en vue d’optimiser les fonctionnalités du site. Afin de voir précisément tous les cookies que nous utilisons, nous vous invitons à télécharger « Ghostery », une extension gratuite pour navigateurs permettant de les détecter et, dans certains cas, de les bloquer.

Ghostery est disponible gratuitement à cette adresse : https://www.ghostery.com/fr/products/

Vous pouvez également consulter le site de la CNIL afin d’apprendre à paramétrer votre navigateur pour contrôler les dépôts de cookies sur votre terminal.

S’agissant des cookies publicitaires déposés par des tiers, vous pouvez également vous connecter au site http://www.youronlinechoices.com/fr/controler-ses-cookies/, proposé par les professionnels de la publicité digitale regroupés au sein de l’association européenne EDAA (European Digital Advertising Alliance). Vous pourrez ainsi refuser ou accepter les cookies utilisés par les adhérents de l'EDAA.

Il est par ailleurs possible de s’opposer à certains cookies tiers directement auprès des éditeurs :

Catégorie de cookie

Moyens de désactivation

Cookies analytiques et de performance

Realytics
Google Analytics
Spoteffects
Optimizely

Cookies de ciblage ou publicitaires

DoubleClick
Mediarithmics

Les différents types de cookies pouvant être utilisés sur nos sites internet sont les suivants :

Cookies obligatoires

Cookies fonctionnels

Cookies sociaux et publicitaires

Ces cookies sont nécessaires au bon fonctionnement du site, ils ne peuvent pas être désactivés. Ils nous sont utiles pour vous fournir une connexion sécuritaire et assurer la disponibilité a minima de notre site internet.

Ces cookies nous permettent d’analyser l’utilisation du site afin de pouvoir en mesurer et en améliorer la performance. Ils nous permettent par exemple de conserver vos informations de connexion et d’afficher de façon plus cohérente les différents modules de notre site.

Ces cookies sont utilisés par des agences de publicité (par exemple Google) et par des réseaux sociaux (par exemple LinkedIn et Facebook) et autorisent notamment le partage des pages sur les réseaux sociaux, la publication de commentaires, la diffusion (sur notre site ou non) de publicités adaptées à vos centres d’intérêt.

Sur nos CMS EZPublish, il s’agit des cookies sessions CAS et PHP et du cookie New Relic pour le monitoring (IP, délais de réponse).

Ces cookies sont supprimés à la fin de la session (déconnexion ou fermeture du navigateur)

Sur nos CMS EZPublish, il s’agit du cookie XiTi pour la mesure d’audience. La société AT Internet est notre sous-traitant et conserve les informations (IP, date et heure de connexion, durée de connexion, pages consultées) 6 mois.

Sur nos CMS EZPublish, il n’y a pas de cookie de ce type.

Pour obtenir plus d’informations concernant les cookies que nous utilisons, vous pouvez vous adresser au Déléguée Informatique et Libertés de l’INRA par email à cil-dpo@inra.fr ou par courrier à :

INRA
24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan cedex - France

Dernière mise à jour : Mai 2018

Menu Logo Principal Agrocampus Ouest Univ R1 Logo Igepp

Institut de Génétique, Environnement et Protection des Plantes

Poggi Sylvain

poggi sylvain
Equipe : Ecologie et Génétique des Insectes

Téléphone : 02 23 48 51 52
Sylvain.Poggi@inrae.fr

Research scientist at INRAE Rennes, France

Contact address

UMR1349 IGEPP, INRAE – Agrocampus Ouest – Université Rennes1, Domaine de la Motte, BP 35327, 35653 Le Rheu Cedex, France

Career

Researcher (2008-present), Plant Health and the Environment Department, Rennes/Le Rheu, France

R&D Senior Engineer in Process Control (2007-2008), PDF Solutions, Paris/Montpellier/San Jose (CA, USA)

R&D Engineer (2000-2007), ALCTRA, Montreuil/Bois, France

Associate Teacher and Researcher (2000), University of Le Mans, France

Research interests and expertise

My current research builds on the interplay between mathematical/statistical modelling and agro-ecology. My main interest lies in developing methodological approaches to derive ecology sound strategies for pest and disease management, thereby reducing the dependence to pesticides. This leads to a set of connected research topics, e.g.:

  • Pest risk assessment
  • Multi-scale modelling of ecological processes
  • Identification of suppressive agro-ecological landscape patterns and their socio-economic viability (in collaboration with ecologists and economists at INRAE)
  • Determination of the agricultural practices impacting ecosystemic services (in collab. with INRAE SAD)

Expertise involved is quantitative ecology and agro-ecology, pest and disease control, population dynamics and epidemiological modelling, data mining (machine learning).

Current and recent activities

Project coordination
  • STARTAUP (FRB, 2018-2021, R. Le Cointe/S. Poggi) : Design of alternative strategies for controlling wireworm damage in maize crops
  • DevMAP (INRA SPE, 2015-2016, N. Parisey/S. Poggi)
  • COPACABANA (INRA SMaCH, 2013-2015): Metrics and methods to link landscape with pest and natural enemies population dynamics
  • INRA SPE DELIA (2013-2014): Multi-scale modelling of ecological processes driving crop colonization in heterogeneous landscape
PhD students
  • Multi-scale modelling of pest population dynamics: from individual cognition to landscape-scale population and community distribution (2013-2016), co-funded by the Plant Health and Environment INRA Department and the Brittany Region. Co-direction with A.M. Cortesero and N. Parisey.
  • Modelling ecological processes and agricultural landscapes dynamics to explore the potential for biological control (2014‐2018), funded by the French Ministry of Education and Research. Co‐direction with J. Baudry and N. Parisey.
Projects membership
  • PREPARE (Ecophyto II, AFB, 2019-2022)
  • QUANTICONTROL (UBL & Agrocampus Ouest, 2019-2020): Quantifying the ecosystem service of pest biological control
  • ESPACE (INRA SMaCH, 2017-2020): Estimating the effects of landscape on both crop pests and their natural enemies
  • ElatPro (ERA-NET C-IPM, 2016-2019): Spotting the needle in a haystack - Predicting wireworm activity in top soil for integrated pest management in arable crops
  • SOLUTION (FRB, 2014‐2016): Enhancing natural pest control services using diversified
    farming practices at the landscape scale
  • GEEK (INRA SMaCH, 2014‐2016): Google trends network & pest outbreaK
  • PEERLESS (ANR, 2013-2017): Predictive ecological engineering for landscape ecosystem services and sustainability
  • SESAME (INRA SMaCH, 2013-2015): Landscape dynamics and pest management
  • ModStatSAP network (INRA SPE & MIA, 2011-2016): Modelling and statistics for plant and animal health
  • SYSBIOTEL (ANR, 2009-2012): Integrated management of soil-borne bioagressors in vegetable cropping systems

Education

One-year night classes in R and SAS statistical software (2005-2006), CNAM Paris, France
Dissertation topic: PLS regression with R

One-year night classes in statistics (2002-2003), CNAM Paris, France
Dissertation topic: Non-linear classification using Support Vector Machines

One-year night classes in Neural Networks (2001-2002), CNAM Paris, France
Dissertation topic: Continuous process control using artificial neural networks

Postgraduate degree and Ph.D in Physics (1996-2000), University of Le Mans, France

Licence, Master and Magistère in Fundamental Physics and Engineering Sciences (1991-1995), University of Paris 7, France

 

Selected publications

Riaboff L., Poggi S., Madouasse A., Couvreur S., Aubin S., Bédère N., Goumand E., Chauvin A., Plantier G. (2020). Development of a methodological framework for a robust prediction of the main behaviours of dairy cows using a combination of machine learning algorithms on accelerometer data. Computers and Electronics in Agriculture 169. DOI

Motisi N., Ribeyre F., Poggi S. (2019) Coffee tree architecture and its interactions with microclimates drive the dynamics of coffee berry disease in coffee trees. Scientific Reports 9: 1–12. DOI

Aviron S., Lalechère E., Duflot R., Parisey N., Poggi S. (2018) Connectivity of cropped vs. semi-natural habitats mediates biodiversity: a case study of carabid beetles communities. Agriculture, Ecosystems & Environment 268:34-43. DOI

Poggi S., Papaïx J., Lavigne C., Angevin F., Le Ber F., Parisey N., Ricci B., Vinatier F., Wohlfahrt J. (2018) Issues and challenges in landscape models for agriculture: from the representation of agroecosystems to the design of management strategies. Landscape Ecology 33:1679-1690 DOI 

Bellot B., Poggi S., Baudry J., Bourhis Y., Parisey N. (2018) Inferring ecological processes from population signatures: A simulation-based heuristic for the selection of sampling strategies. Ecological Modelling 385:12-25. DOI 

Ricci B., Petit S., Allanic C., Langot M., Parisey N., Poggi S. (2018) How effective is large landscape-scale planning for reducing local weed infestations? A landscape-scale modelling approach. Ecological Modelling 384:221-232. DOI 

Poggi S., Le Cointe R., Riou J.-B., Larroudé P., Thibord J.-B., Plantegenest M. (2018) Relative influence of climate and agroenvironmental factors on wireworm damage risk in maize crops. Journal of Pest Science 91:585–599. DOI 

Bourhis Y., Poggi S., Mammeri Y., Le Cointe R., Cortesero A.M., Parisey N. (2017) Foraging as the landscape grip for population dynamics - a mechanistic model applied to crop protection. Ecological Modelling 354:26-36. DOI

Parisey N., Bourhis Y., Roques L., Soubeyrand S., Ricci B., Poggi S. (2016) Rearranging agricultural landscapes towards habitat quality optimisation: In silico application to pest regulation. Ecological Complexity. DOI

Le Cointe R., Simon T.E., Delarue P., Hervé M., Leclerc M., Poggi S. (2016) Reducing the use of pesticides with site-specific application: the chemical control of Rhizoctonia solani as a case of study for the management of soil-borne diseases. PLoS ONE 11(9): e0163221. DOI

Aviron S., Poggi S., Varennes Y.-D., Lefèvre A. (2016) Local landscape heterogeneity affects crop colonization by natural enemies of pests in protected horticultural cropping systems. Agriculture, Ecosystems & Environment 227:1–10. DOI

Ciss M., Poggi S., Memmah M.-M., Franck P., Gosme M., Parisey N. and Roques L. (2016) A model-based approach to assess the effectiveness of pest biocontrol by natural enemies. http://arxiv.org/abs/1602.06584

Bourhis Y., Poggi S., Mammeri Y., Cortesero A.M., Le Ralec A. and Parisey N. (2015) Perception-based foraging for competing resources: assessing pest population dynamics at the landscape scale from heterogeneous resource distribution. Ecological Modelling 312:211-221. DOI

Saussure S., Plantegenest M., Thibord J.-B., Larroudé Ph. and Poggi S. (2015) Management of wireworm damage in maize fields using new, landscape-scale strategies. Agronomy for Sustainable Development 35:793-802. DOI

Puech C., Poggi S., Baudry J. and Aviron S. (2015) Do farming practices affect natural enemies at the landscape scale? Landscape Ecology 30:125–140. DOI

Simon T.E., Le Cointe R., Delarue P., Morlière S., Montfort F., Hervé M.R. and Poggi S. (2014) Interplay between Parasitism and Host Ontogenic Resistance in the Epidemiology of the Soil‐Borne Plant Pathogen Rhizoctonia solani. PLoS ONE 9(8): e105159. DOI

Puech C., Baudry J., Joannon A., Poggi S. and Aviron S. (2014) Organic vs. conventional farming dichotomy: Does it make sense for natural enemies?, Agriculture, Ecosystems & Environment 194:48‐57. DOI

Poggi S., Neri F.M., Deytieux V., Bates A., Otten W., Gilligan C.A. and Bailey D.J. (2013) Percolation-based risk index for pathogen invasion: application to soil-borne disease in propagation systems, Phytopathology 103: 1012-1019. DOI

Motisi N., Poggi S., Filipe J.A.N., Lucas P., Doré T., Montfort F., Gilligan C.A. and Bailey D.J. (2013) Epidemiological analysis of the effects of biofumigation for biological control of root rot in sugar beet, Plant Pathology 62(1):69-78. DOI

Hamelin F.M., Castel M., Poggi S., Andrivon D. and Mailleret, L. (2011) Seasonality and the evolutionary divergence of plant parasites, Ecology 92(12):2159-2166. DOI

Montfort F., Poggi S., Morlière S., Collin F., Lemarchand E. and Bailey D.J. (2011) Opportunities to reduce Rhizoctonia solani expression on carrots by biofumigation with Indian mustard, Acta Horticulturae 917:149-157.

 

Selected conferences

Poggi S., Sergent M., Boussard H., Mammeri Y., Plantegenest M., Bourhis Y., Le Cointe R. (2020) Combining models of agricultural landscapes and soil-dwelling pest population dynamics to design novel management strategies against wireworms. 26th International Congress of Entomology, Helsinki (Finland).

Poggi S., Sergent M., Mammeri Y., Plantegenest M., Le Cointe R. and Bourhis Y. (2019) Temporal dynamics of grasslands as sources of soil-dwelling insect pests: new insights from in silico experiments for pest management strategies. The International Society for Ecological Modelling Global Conference 2019, Salzburg (Austria).

Motisi N., Papaïx J. and Poggi S. (2019) Antagonistic effects of shade on the epidemiological mechanisms driving coffee berry disease. 4th World Congress on Agroforestry, Montpellier (France).

Motisi N., Papaïx J. and Poggi S. (2018) Mechanistic-statistical modelling of Coffee Berry Disease dynamics and elucidation of the epidemiological mechanisms affected by shade. International Conference on Ecological Sciences, Rennes (France).

Aviron S., Poggi S., Varennes Y.-D., Lefèvre A. (2017) Effects of landscape heterogeneity on crop colonization by natural predators of pests in protected horticultural cropping systems. 7th Meeting IOBC-WPRS, Dundee (Scotland, UK).

Bourhis Y., Poggi S., Mammeri Y., Cortesero A.M. and Parisey N. (2016) Scaling-up pest foraging behaviours to the agricultural landscape - PDE applied to crop protection. European Conference on Mathematical and Theoretical Biology, University of Nottingham (UK).

Parisey N., Bourhis Y. and Poggi S. (2015) Rearranging agricultural landscapes towards habitat quality optimisation: ecological engineering applied to pest regulation. Spatial Ecology and Conservation 3, Bristol (UK).

Aviron S., Poggi S., Parisey N., Duflot R., Boussard H. and Lalechere E. (2015) Contribution of annual crops vs. semi-natural habitats to landscape connectivity for different types of carabid beetles communities. 9th IALE World Congress, Portland (USA).

Memmah M.M., Roques L., Ciss M., Parisey N., Poggi S. and Yao X. (2014) Agricultural land use optimisation using many‐objective preference‐inspired co‐evolutionary algorithm. 5th International Conference on Metaheuristics and Nature Inspired Computing, Marrakech (Morocco).

Ciss M., Poggi S., Roques L., Memmah M.M., Martinet V., Gosme M., Ricci B. and Parisey N. (2014) Exploring pest regulation in the context of dynamic agricultural landscapes. Colloque PAYOTE, Paris (France).

Stoeckel S., Masson J.P. and Poggi S. (2013) Integrating knowledge on genomic structure and ancestral diversity to detect outlying genomic regions. Stochastic Models in Ecology, Evolution and Genetics, Angers (France)

Poggi S., Neri F.M., Deytieux V., Bates A., Otten W., Gilligan C.A. and Bailey D.J. (2012) The application of percolation theory for predicting the invasive spread of a soil-borne fungal pathogen in the seedling propagation of field vegetables, 9th Meeting of the French Phytopathological Society, Aussois (France)

Hamelin F., Castel M., Poggi S., Andrivon D. And Mailleret L. (2011) Seasonality and the evolutionary divergence of plant parasites, 8th European Conference on Mathematical and Theoretical Biology, Krakow (Poland).

Mraidi R., Motisi N., Montfort F., Rivot E. and Poggi S. (2010) Contribution, par une approche bayésienne à l’étude de l’effet de la biofumigation sur une épidémie de Rhizoctone brun, 3ème Conférence Internationale de la Société Francophone de Biologie Théorique, Tunis (Tunisia).

Poggi S., Deytieux V., Neri F.M., Bates A., Otten W., Gilligan C.A. and Bailey D.J. (2009) Thresholds for the invasive spread and control of soil-borne disease in plant propagation. 10th International Epidemiology Workshop, Geneva (USA).

 

Keywords

Spatio-temporal modelling, multi-scale modelling, population dynamics, landscape ecology, agro-ecology, pest management, crop protection, data mining