En savoir plus

Notre utilisation de cookies

« Cookies » désigne un ensemble d’informations déposées dans le terminal de l’utilisateur lorsque celui-ci navigue sur un site web. Il s’agit d’un fichier contenant notamment un identifiant sous forme de numéro, le nom du serveur qui l’a déposé et éventuellement une date d’expiration. Grâce aux cookies, des informations sur votre visite, notamment votre langue de prédilection et d'autres paramètres, sont enregistrées sur le site web. Cela peut faciliter votre visite suivante sur ce site et renforcer l'utilité de ce dernier pour vous.

Afin d’améliorer votre expérience, nous utilisons des cookies pour conserver certaines informations de connexion et fournir une navigation sûre, collecter des statistiques en vue d’optimiser les fonctionnalités du site. Afin de voir précisément tous les cookies que nous utilisons, nous vous invitons à télécharger « Ghostery », une extension gratuite pour navigateurs permettant de les détecter et, dans certains cas, de les bloquer.

Ghostery est disponible gratuitement à cette adresse : https://www.ghostery.com/fr/products/

Vous pouvez également consulter le site de la CNIL afin d’apprendre à paramétrer votre navigateur pour contrôler les dépôts de cookies sur votre terminal.

S’agissant des cookies publicitaires déposés par des tiers, vous pouvez également vous connecter au site http://www.youronlinechoices.com/fr/controler-ses-cookies/, proposé par les professionnels de la publicité digitale regroupés au sein de l’association européenne EDAA (European Digital Advertising Alliance). Vous pourrez ainsi refuser ou accepter les cookies utilisés par les adhérents de l'EDAA.

Il est par ailleurs possible de s’opposer à certains cookies tiers directement auprès des éditeurs :

Catégorie de cookie

Moyens de désactivation

Cookies analytiques et de performance

Realytics
Google Analytics
Spoteffects
Optimizely

Cookies de ciblage ou publicitaires

DoubleClick
Mediarithmics

Les différents types de cookies pouvant être utilisés sur nos sites internet sont les suivants :

Cookies obligatoires

Cookies fonctionnels

Cookies sociaux et publicitaires

Ces cookies sont nécessaires au bon fonctionnement du site, ils ne peuvent pas être désactivés. Ils nous sont utiles pour vous fournir une connexion sécuritaire et assurer la disponibilité a minima de notre site internet.

Ces cookies nous permettent d’analyser l’utilisation du site afin de pouvoir en mesurer et en améliorer la performance. Ils nous permettent par exemple de conserver vos informations de connexion et d’afficher de façon plus cohérente les différents modules de notre site.

Ces cookies sont utilisés par des agences de publicité (par exemple Google) et par des réseaux sociaux (par exemple LinkedIn et Facebook) et autorisent notamment le partage des pages sur les réseaux sociaux, la publication de commentaires, la diffusion (sur notre site ou non) de publicités adaptées à vos centres d’intérêt.

Sur nos CMS EZPublish, il s’agit des cookies sessions CAS et PHP et du cookie New Relic pour le monitoring (IP, délais de réponse).

Ces cookies sont supprimés à la fin de la session (déconnexion ou fermeture du navigateur)

Sur nos CMS EZPublish, il s’agit du cookie XiTi pour la mesure d’audience. La société AT Internet est notre sous-traitant et conserve les informations (IP, date et heure de connexion, durée de connexion, pages consultées) 6 mois.

Sur nos CMS EZPublish, il n’y a pas de cookie de ce type.

Pour obtenir plus d’informations concernant les cookies que nous utilisons, vous pouvez vous adresser au Déléguée Informatique et Libertés de l’INRA par email à cil-dpo@inra.fr ou par courrier à :

INRA
24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan cedex - France

Dernière mise à jour : Mai 2018

Menu Logo Principal Agrocampus Ouest Univ R1 Logo Igepp

Institut de Génétique, Environnement et Protection des Plantes

Ferreira de Carvalho Julie

Ferreira de Carvalho Julie
Equipe : Biodiversité et Polyploïdie

Téléphone : 02 23 48 59 97
Julie.Ferreira-De-Carvalho@inrae.fr

 

J. Ferreira de Carvalho
Dr. Julie Ferreira de Carvalho

Evolutionary Biologist, Interested in Plant Speciation and Adaptation

Marie Curie Fellow INRAE Rennes, France – Joint Laboratory for Genetics, Environment and Plant protection (IGEPP).

Expertise in Transcriptomics, Comparative Epi/Genomics, Molecular Phylogeny and Bioinformatics.

Contact address

UMR1349 IGEPP, INRAE – Agrocampus Ouest – Université Rennes1, Domaine de la Motte, BP 35327, 35653 Le Rheu Cedex, France

Career

June 2018-present - Marie Curie post-doctoral fellow, Group Biodiversity and Polyploidy, INRAE IGEPP Rennes, France. Subject: Structural and functional dynamics of Brassica napus polyploid genome.

May 2017-May 2018 - Agreenskills+ post-doctoral fellow, Group Biodiversity and Polyploidy, INRA IGEPP Rennes, France. Subject: Immediate impact of polyploidy and of human selection on the evolutionary dynamic of Brassica napus.

Apr 2013-Apr 2017 - Post-doctoral fellow in the group of Dr. Koen Verhoeven, Netherlands Institute of Ecology, Wageningen (NL). Subject: (Epi)Genomic footprints associated with asexual evolution.

Oct 2009-Feb 2013 - PhD student/teaching assistant, UMR CNRS Ecobio, University of Rennes 1, France. Title: Genome evolution of polyploid Spartina species invading salt-marshes: contribution of Next-Generation Sequencing technologies. Supervised by Prof. Malika Ainouche.

Research interest

In the era of Anthropocene and extreme human disturbances, one of the main challenges is to sustainably feed the world population. Crops are already disturbed by extreme temperature, lack of water and repeated hot waves as well as emerging pathogens. Thus, it is timely to develop novel varieties, more adapted to these environmental changes. In the last years, considerable advances have been undertaken to better comprehend the molecular mechanisms at the origin of speciation, human domestication and adaptation of plant species. However, more integrative and predictable models are essential to provide the scientific community, breeders and governmental agencies to tackle current issues.

For a decade, rapidly evolving sequencing technologies have helped to address major pending questions in evolutionary biology and agronomy. It is a unique tool to draw an integrative vision of the molecular mechanisms underlying phenotypic traits in every possible biological systems. My work is situated in the heart of this technological and societal context. I am interested in unravelling molecular processes (transcriptomic, genomic and epigenomic) and building an integrative understanding (from genes to eco-agrosystems) of the main molecular mechanisms involved in plant genome evolution and adaptation. These fundamental mechanisms can help us predict the faith of biodiversity in a changing environment and improve its management.

I. Consequences of Interspecific hybridization and Genome doubling on speciation and adaptive processes

Whole Genome Duplication (WGD) or Polyploidy has played a major role in shaping biodiversity and forming adapted plant species. Many of current important crops are polyploids or come from early rounds of hybridization and WGD events. I am interested in unravelling the molecular processes associated with these speciation and adaptive phenomena using comparative epi/genomic approaches.

Genome stabilization after allopolyploidy

Meiosis and fertility. In oilseed rape (Brassica napus), meiotic stability and high fertility are observed in natural form of the allopolyploid (created from the cross between turnip, B. rapa, and cabbage, B. oleracea, ca. 7500 years ago). However, when mimicking the speciation process in the lab, resynthesized lines of B. napus exhibit large number of multivalent chromosomes leading to unreduced gamete formation and low fertility. Using various resynthesized lines of B. napus and SNP array technology, I am investigating the links between homoeologous rearrangements, gene loss, multivalent apparition and low fertility. This research project will allow discovering the still unknown molecular processes at the origin of oilseed rape speciation and successful establishment (Ferreira de Carvalho et al. In prep).

Figure 1

Figure 1 : Schematic representation of oilseed rape speciation process

 

Cytonuclear interactions. After allopolyploidy, cytoplasmic incompatibilities can also arise as newly formed allopolyploid species confront biparental nuclear chromosomes with uniparentally inherited plastid genome. To avoid any deleterious effects of unequal genome inheritance, preferential utilization of the plastid donor over the other one has been hypothesized to occur in allopolyploids. I retrieved 110 genes implicated in nine plastid protein complexes. These genes in the young allopolyploid B. napus showed no subgenome expression biased or maternal homogenization via gene conversion despite presence of some non-synonymous substitutions between plastid genomes of parental progenitors. Instead, subgenome dominance was observed regardless of the maternal progenitor (Ferreira de Carvalho et al. 2019 Plant Journal).

Figure 2

Figure 2 : Position of nuclear genes involved in nine plastid protein complexes and their homoeologous and paralogous relationships in Brassica napus. The outer circle represents the 19 chromosomes of B. napus var. Darmor (from Chalhoub et al. 2014). Genes are then positioned on the chromosomes and possible events of gene conversion events are illustrated with the black dashed lines. Homoeologous relationships between nuclear gene copies from the A and C subgenomes are presented by solid colored lines. The dashed colored lines represent the paralogous relationships between redundant copies within a subgenome.

 

 

Molecular mechanisms underlying functionalization processes in polyploid species

As mentioned before, ancient and recent polyploidy events are recurrent within Angiosperms. Increase of duplicated gene copies can be a source of additional variability to successful establish in natural environments or selected for in response to stresses.

Gene loss and fractionation. Most of redundant gene copies return to single gene status. This process is not random. However, the rules steering this process and the evolutionary consequences are still unknown. Studying in parallel B. rapa and B. oleracea genomes that both have experienced the same WGD, we show that the same paleologous copies are retained in both species. Additionally, the ancestral function is maintained in those copies, making neo-functionalization processes quite scarce in Brassica species (Rousseau-Gueutin et al. In prep).

Gene expression dynamics. In addition to gene copy retention, we investigated gene expression dynamics and demonstrated that despite variation in gene expression between parental species, the subgenome coming from B. rapa is often upregulated compared to B. oleracea subgenome in the allopolyploid (Rousseau-Gueutin et al. In prep). Follow-up analyses are ongoing to investigate the probable causes of this subgenome dominance in Brassica polyploids. I also studied the faith of gene expression in other paleo- and allopolyploid models to detect genes involved in invasiveness and stress tolerance (in Spartina maritima S. alterniflora and S. anglica; Ferreira de Carvalho et al. 2013a Heredity, 2017 PSE, Alvarez et al. 2018 Molecular Ecology).

Epigenetic disruptions. Following allopolyploidy, epigenetic factors can also be disrupted and impact plant phenotypes. I previously looked at the repetitive compartment using shallow DNA sequencing in polyploid Spartina (Ferreira de Carvalho et al. 2013b Plant Molecular Biology) and currently investigate the impact of transposable elements on transcriptome evolution and phenotypic traits in Brassica. To that purpose, I use PacBio assembled genomes, resequencing strategies and RNA-Seq in resynthesized and natural populations of B. napus.

II. Adaptive consequences of epigenetic mechanisms in asexually reproducing species

Change in ploidy level is, in some cases, associated with a change in reproductive systems. For instance, common dandelions are diploid and reproduced sexually in the south of Europe whereas in the North East of Europe triploid apomictic populations are encountered (See Figure 3). This system offers the opportunity to (1) study the transition from sexuality to strict asexuality in various natural lineages and (2) the importance of transgenerational epigenetic mechanisms in plant adaptation. I developed the first reference transcriptome for the common triploid dandelion (Ferreira de Carvalho et al. 2016a BMC Genomics) and initiated the first reference genome using long reads for the sexual diploid common dandelion (In prep). Using RNA-Seq, I then investigated metabolic pathways showing signs of early divergence among allopatric populations of the same apomictic lineage. I demonstrated functional divergence regarding acyl-lipid and abscisic acid pathways. Finally, I identified mutation accumulation in SNPs as well as in Transposable elements that cannot simply be explained by genetic drift (Ferreira de Carvalho et al. 2016a BMC Genomics). Therefore, I investigated further the potential impact of Transposable elements in asexual plant adaptation. I identified young specific TE families that are functionally dynamic; some of these families are differentially transcribed between allopatric populations and are associated with differences in methylation levels. Therefore, some copies could be experiencing activity in asexual dandelion to provide genetic diversity that can then be selected upon. Interestingly, the flowering pathway and key regulator genes seem to be epigenetically regulated. As the same genotype can be found from Switzerland to Sweden where vernalization requirements differ tremendously, asexual populations seem to have diverged at the epigenetic level to adapt to contrasted environments. In parallel, I took part in various research projects on transgenerational epigenetic heritability in stress conditions (Morgado et al. 2017 in Molecular Biology and Evolution; Verhoeven et al. 2018 in New Phytologist).

Figure 3

Figure 3 : Distribution of the common dandelion in Europe. New asexual lineages arising from intraspecific crosses between diploid maternal donor and triploid paternal donor

 

Peer-reviewed publications (impact factor)

  1. Ferreira de Carvalho J., Lucas J., Deniot G., Falentin C., Filangi O., Gilet M., Legeai F., Lode M., Morice J., Trotoux G., Aury J-M., Barbe V., Keller J., Snowdon R., He Z., Denoeud F., Wincker P., Bancroft I., Chèvre A-M. and M. Rousseau-Gueutin (2019). Cytonuclear interactions remain stable during allopolyploid evolution despite repeated whole-genome duplications in Brassica. Accepted in The Plant Journal (IF=5.78)
  2. Alvarez M., Ferreira de Carvalho J., Salmon A., Ainouche M., Cavé-Radet A., El Amrani A., Foster T.E., Moyer S. and C.L. Richards (2018). Transcriptome response of the foundation plant Spartina alterniflora. To the Deepwater Horizon oil spill. Molecular Ecology 27(14):2986-3000 (IF=6.13)
  3. Verhoeven K.J.F, Verbon E., van Gurp T., Oplaat C., Ferreira de Carvalho J., Morse A., Stahl M., Macel M. and L. McIntyre (2018). Parental jasmonic acid treatment affects offspring transcriptomes and leaf chemical profiles in dandelion. New Phytologist 217(2):871-882 (IF=7.43)
  4. Ferreira de Carvalho J., Boutte J., Bourdau P., Chelaifa H., Ainouche K., Salmon A. and M. Ainouche (2017). Gene expression variation in natural populations of hexaploid (parents and hybrids) and allododecaploid Spartina species (Poaceae). Plant Systematics and Evolution 303(8):1061-79 (IF=1.45)
  5. Morgado L., Preite V., Oplaat C., Anava S., Ferreira de Carvalho J., Rechavi O., Johannes F., and K.J.F. Verhoeven (2017). Small RNAs reflect environment from grandparental generation in apomictic dandelions. Molecular Biology and Evolution 34(8):2035-40 (IF=10.22)
  6. Ferreira de Carvalho J., de Jager V., van Gurp T., Wagemaker N. and K.J.F. Verhoeven (2016). Recent and dynamic transposable elements contribute to genomic divergence under asexuality. BMC Genomics 17:884 (IF=3.73)
  7. Boutte J., Ferreira de Carvalho J., Ainouche M. and Salmon A. Reference transcriptomes and detection of duplicated copies in hexaploid parents, hybrids and allododecaploid Spartina species (Poaceae) (2016). Genome Biology and Evolution 8(9):3030-44 (IF=3.94)
  8. Huska D., Leitch I., Ferreira de Carvalho J., Leitch A., Salmon A., Ainouche M. and A. Kovarik (2016). Persistence, dispersal and genetic evolution of recently formed Spartina homoploid hybrids and allopolyploids in Southern England. Biological Invasions 18(8):2137-51 (IF=3.05)
  9. Ferreira de Carvalho J., Oplaat C., Pappas N., Derks M., de Ridder D. and K.J.F. Verhoeven (2016). Heritable gene expression differences between apomictic clone members in Taraxacum officinale: Insights into early stages of evolutionary divergence in asexual plants. BMC Genomics. 17: 203 (IF=3.73)
  10. Boutte J., Aliaga B., Lima O., Ferreira de Carvalho J., Ainouche A., Macas J., Rousseau-Gueutin M., Coriton O., Ainouche M. and A. Salmon (2015). Haplotype Detection from Next Generation Sequencing in High Ploidy-Level Species: 45S rDNA Gene Copies in the Hexaploid Spartina maritima. G3 6(1):29-40 (IF=2.74)
  11. Martin G., Rousseau-Gueutin M., Cordonnier S., Lima O., Michon-Coudouel S., Naquin D., Ferreira de Carvalho J., Ainouche M., Salmon A. and A. Ainouche (2014). The first complete chloroplast genome of Genistoid legume Lupinus lucteus: Evidence for a novel major lineage-specific rearrangement and new insights regarding plastome evolution in the legume family. Annals of Botany 113 (7): 1197-1210 (IF=3.65)
  12. Ferreira de Carvalho J., Poulain J., Da Silva C., Wincker P., Michon-Coudouel S., Dheilly A., Naquin D., Boutte J., Salmon A. and M. Ainouche (2013a). Transcriptome de novo assembly from Next-Generation Sequencing and comparative analyses in the hexaploid salt marsh species Spartina maritima and Spartina alterniflora (Poaceae). Heredity 110: 181-93 (IF=3.87)
  13. Ferreira de Carvalho J., Chelaifa H., Mangenot S., Couloux A., Wincker P., Bellec A., Fourment J., Berges H., Salmon A. and M. Aïnouche (2013b). Exploring the genome of the salt-marsh species Spartina maritima (Poaceae, Chloridoideae) through BAC End Sequence analysis. Plant Molecular Biology 83: 591-606 (IF=3.54)

 Book chapters

  • Rousseau-Gueutin M., Keller J., Ferreira de Carvalho J., Aïnouche A., and G. Martin (2018). The intertwined plastid and nuclear evolution in land plants. In: Soltis PS, Soltis DE (Eds) Chloroplasts - Physiology and Genetics, IntechOpen.
  • Ainouche M., Chelaifa H., Ferreira de Carvalho J., Bellot S., Ainouche A. and A. Salmon (2012). Polyploid evolution in Spartina: dealing with highly redundant genomes. In: Soltis PS, Soltis DE (Eds) Polyploidy and Genome Evolution, Springer Berlin Heidelberg. pp 225-244

Publications in preparation

  • Rousseau-Gueutin M., Ferreira de Carvalho J., Lucas J., Denoeud F., He Z., Boutte J., Deniot G., Falentin C., Filangi O., Gilet M., Legeai F., Lode M., Morice J., Trotoux G., Aury J-M., Barbe V., Snowdon R., Wincker P., Bancroft I. and A-M Chèvre. Structural and functional evolutionary dynamics of duplicated genes and genomes in nascent and natural B. napus.

 

Twitter https://twitter.com/drjulieferreira?lang=fr

Researchgate https://www.researchgate.net/profile/Julie_Ferreira_de_Carvalho

Orcid  https://orcid.org/0000-0001-6200-3344

LinkedIn https://www.linkedin.com/in/julie-ferreira-de-carvalho-30515961/