En savoir plus

Notre utilisation de cookies

« Cookies » désigne un ensemble d’informations déposées dans le terminal de l’utilisateur lorsque celui-ci navigue sur un site web. Il s’agit d’un fichier contenant notamment un identifiant sous forme de numéro, le nom du serveur qui l’a déposé et éventuellement une date d’expiration. Grâce aux cookies, des informations sur votre visite, notamment votre langue de prédilection et d'autres paramètres, sont enregistrées sur le site web. Cela peut faciliter votre visite suivante sur ce site et renforcer l'utilité de ce dernier pour vous.

Afin d’améliorer votre expérience, nous utilisons des cookies pour conserver certaines informations de connexion et fournir une navigation sûre, collecter des statistiques en vue d’optimiser les fonctionnalités du site. Afin de voir précisément tous les cookies que nous utilisons, nous vous invitons à télécharger « Ghostery », une extension gratuite pour navigateurs permettant de les détecter et, dans certains cas, de les bloquer.

Ghostery est disponible gratuitement à cette adresse : https://www.ghostery.com/fr/products/

Vous pouvez également consulter le site de la CNIL afin d’apprendre à paramétrer votre navigateur pour contrôler les dépôts de cookies sur votre terminal.

S’agissant des cookies publicitaires déposés par des tiers, vous pouvez également vous connecter au site http://www.youronlinechoices.com/fr/controler-ses-cookies/, proposé par les professionnels de la publicité digitale regroupés au sein de l’association européenne EDAA (European Digital Advertising Alliance). Vous pourrez ainsi refuser ou accepter les cookies utilisés par les adhérents de l'EDAA.

Il est par ailleurs possible de s’opposer à certains cookies tiers directement auprès des éditeurs :

Catégorie de cookie

Moyens de désactivation

Cookies analytiques et de performance

Realytics
Google Analytics
Spoteffects
Optimizely

Cookies de ciblage ou publicitaires

DoubleClick
Mediarithmics

Les différents types de cookies pouvant être utilisés sur nos sites internet sont les suivants :

Cookies obligatoires

Cookies fonctionnels

Cookies sociaux et publicitaires

Ces cookies sont nécessaires au bon fonctionnement du site, ils ne peuvent pas être désactivés. Ils nous sont utiles pour vous fournir une connexion sécuritaire et assurer la disponibilité a minima de notre site internet.

Ces cookies nous permettent d’analyser l’utilisation du site afin de pouvoir en mesurer et en améliorer la performance. Ils nous permettent par exemple de conserver vos informations de connexion et d’afficher de façon plus cohérente les différents modules de notre site.

Ces cookies sont utilisés par des agences de publicité (par exemple Google) et par des réseaux sociaux (par exemple LinkedIn et Facebook) et autorisent notamment le partage des pages sur les réseaux sociaux, la publication de commentaires, la diffusion (sur notre site ou non) de publicités adaptées à vos centres d’intérêt.

Sur nos CMS EZPublish, il s’agit des cookies sessions CAS et PHP et du cookie New Relic pour le monitoring (IP, délais de réponse).

Ces cookies sont supprimés à la fin de la session (déconnexion ou fermeture du navigateur)

Sur nos CMS EZPublish, il s’agit du cookie XiTi pour la mesure d’audience. La société AT Internet est notre sous-traitant et conserve les informations (IP, date et heure de connexion, durée de connexion, pages consultées) 6 mois.

Sur nos CMS EZPublish, il n’y a pas de cookie de ce type.

Pour obtenir plus d’informations concernant les cookies que nous utilisons, vous pouvez vous adresser au Déléguée Informatique et Libertés de l’INRA par email à cil-dpo@inra.fr ou par courrier à :

INRA
24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan cedex - France

Dernière mise à jour : Mai 2018

Menu Logo Principal Institut Agro Rennes Angers Univ R1 Logo Igepp

Institut de Génétique, Environnement et Protection des Plantes

Chèvre Anne-Marie

Chèvre Anne-Marie
Equipe : Diversité, Evolution et génomique des Interactions Biotiques

Téléphone : 02 23 48 51 31
Anne-Marie.Chevre@inrae.fr

Team leader: Biodiversity and Polyploidy

ORCID

https://cv.archives-ouvertes.fr/anne-marie-chevre

Expertise-Skills

Polyploidy, recombination, interspecific hybridization, cytogenetics

Career

  • Since 2007 -  Team leader of the group Biodiversity and Polyploidy
  • 2012-2016 -  Deputy head of the new Research Unit, UMR1349 IGEPP INRA, AgroCampus Ouest- Université de Rennes1, Fr (more than 270 persons),
  • 2009-2011 -  Head of research unit, UMR118 APBV, INRA, AgroCampus Ouest- Université de Rennes1, Fr (more than 150 persons)
  • Since 1995 -  Senior scientist (at INRA, UMR APBV then IGEPP, Le Rheu, Fr.
  • 1988-1989 -  Post-doc at the Department of Vegetable Crops, University of California, Davis “Molecular characterization of B.napus-B.nigra addition lines”. Laboratoire de C.F.Quiros,
  • 1985-1995 -  Permanent position as scientist (CR) at INRA, Research Unit APBV, Le Rheu, France 
  • 1985         -  PhD University of Bordeaux II (1985) Research on “In vitro vegetative micropropagation of chestnut”. Research Unit INRA Bordeaux (Dr G. Salesses)

Research interests

My research is mainly focused on Brassiceae species with complementary studies on the process of polyploidy stabilization through regulation of homologous and homoeologous recombination in Brassica. These knowledges are useful to insert genes of interest from related species into crops,  and to assess gene flow from the crop to the weeds.

  • Polyploidy stabilization through regulation of homologous and homoeologous recombination
AMC_1

The Brassica model is particularly relevant to explore the process involved in polyploid stabilization and in recombination regulation. In fact, several rounds of whole genome duplication are at the origin of the different diploid Brassica species. A recent new round of polyploidy is at the origin of oilseed rape (Brassica napus, AACC, 2n=38) which is a natural hybrid between B. rapa (AA, 2n=20) and B. oleracea (CC, 2n=18). However, B. napus presents a very low genetic diversity due to high selection pressure for seed quality whereas a large diversity (see our Genetic Resource Center, BrACySol-https://www6.rennes.inra.fr/igepp_eng/About-IGEPP/Platforms/BrACySol) exists in its diploid progenitors (e.g. Aissiou et al. 2018). In order to describe this huge diversity, we notably contributed to the sequencing of reference genomes of the diploid and polyploid species using the latest technologies (e.g. Belser et al. 2018).

We analyzed the different ways to introduce novel genetic diversity in B. napus using its diploid parental species. Depending on the chosen strategy, different impacts on either homologous or homoeologous recombination may be observed. From this research, we increase our knowledge on the genetic mechanism involved on polyploid stabilization (Pelé et al. 2018) and on possible genetic diversity enlargement.

 First, we tried to clarify how diploid genome evolved in a polyploid context. To that purpose, we extracted by successive crosses the A genome of oilseed rape at the diploid AA stage and observed that it is impossible to obtain a AA diploid individual (2n=2x=20) with the A genome of B. napus, indicating an evolution in polyploid context (Pelé et al. 2017a). Secondly, we resynthesized oilseed rape by crosses between different varieties of the two diploid progenitors through different pathways. The first meiosis of the new oilseed rape acts as a genome blender promoting homoeologous recombination between A and C genomes (Szadkowski et al. 2010, 2011) as so generating non-reciprocal translocations in the following generations (Rousseau-Gueutin et al. 2017). The functional impact of gene redundancy and of structural rearrangements (homoeologous exchanges) on speciation are currently studied by Mathieu Rousseau-Gueutin. Sequencing data of this material already allowed elucidation of nucleo-cytoplasmic interactions in our polyploidy model (Ferreira de Carvalho et al. 2019). Additionally, we are analyzing the relation between genome dynamics and meiotic stability linked to seed fertility. Thirdly, we tested another strategy by direct crosses between oilseed rape and its progenitors and showed it is the most efficient technique to improve homologous recombination (Leflon et al. 2010).

All these data provided information on regulations of meiosis. In collaboration with E. Jenczewski (IJPB, Versailles, France), we showed that homoeologous recombination between A and C genome at the haploid stage is under polygenic control with a major QTL on C09, PrBn (Jenczewski et al. 2003; Liu et al. 2006; Nicolas et al. 2009, 2012; Grandont et al. 2014). The origin of this control, pre-existing in diploid or occurring in polyploidy context is still under debate. On another hand, we showed that it is possible to change drastically the regulation control of homologous recombination between A genomes in AAC allotriploid hybrid obtained by direct crosses between B. napus and B. rapa.  The crossover frequency is increased (x3.4) and crossovers are distributed all along the A chromosomes even on genomic regions, which are normally deprived of crossover (pericentromeric regions) compared to the results obtained from diploid AA hybrids with the same A genotypes (Leflon et al. 2010; Pelé et al. 2017).  This effect is not linked to the number of C chromosomes in addition but to specific C chromosomes, especially C09 (Suay et al. 2016; Pelé et al. in prep). From these data, the impact of the ploidy level on meiosis regulation and the identification of the mechanisms involved are in progress (PhD F. Boideau).

    • Project France génomique PolySuccess (2014-2020) Coordination A.M. Chèvre
    • Project BAP RecOptic (2019-2020) Coordination A.M. Chèvre
    • Project Tassili (France-Algérie) (2016-2018) Coordination A.M. Chèvre et H. Hadj-Arab
    • Project Promosol, Bingo (2016-2017) Coordination A.M. Chèvre
    • Project ANR Blanc CROC (2014-2018) Coordination E. Jenczewski (IJPB, Versailles)
    • Project INRA Transfert HyperRec (2013-2016) Coordination R.Mercier (IJPB, Versailles)
    • Project ERA CAPS Evo-Genapus (2014-2016) Coordination I. Bancroft (York Univ., UK)
    • Project BAP RecMax (2014-2015) Coordination A.M. Chèvre
    • Project ANR Blanc CoPath (2007-2010) Coordination : C. Mézard (IJPB, Versailles)
    • Project ANR Biodiversité (2006-2009) Co-Coordination avec M. Ainouche (Université Rennes 1)
    • Project Barrande (France-République Tchèque) (2008-2009) coordination A.M. Chèvre-A. Kovarik
  • Introgression of genes of interest within the crop
AMC_2

The knowledge acquired on regulation of recombination allowed introgression of gene of interest from related species in oilseed rape.

The high frequency of crossover between homologous chromosomes and the modification of recombination landscape in allotriploid hybrids leaded to a large research program initiated by S. Paillard (previously scientist in the group), aiming to enlarge oilseed rape diversity with introgressions of a limited size. Using a  B. rapa and B.oleracea core collection, we performed  crosses with the same B. napus variety, and produced large pre-breeding populations after several backcrosses with the same B. napus variety. The genotyping and the screening for gene of interest are in progress but seeds are already available and tested for various agronomic traits of interests by private partners.  In parallel, the same strategy allowed introgression of a specific resistance gene to blackleg from B. rapa to B. napus (Balesdent et al. 2013).

Different strategies were developed from less closely-related species (B. nigra or B. juncea) to promote introgression into oilseed rape genome through homoeologous recombinations (Mason and Chèvre 2016) and to introduce specific blackleg resistance genes. Two of them, Rlm6 and Rlm10 genes will be soon available for private partners. Rlm6 was largely used to assess durability of specific resistance gene combined or not with a polygenic partial resistance (Brun et al. 2010)

    • Project PIA Rapsodyn (2011-2020), Coordination N. Nesi (IGEPP)
    • Project KBBE Gewidis (2014-2016) Coordination R.Delourme (IGEPP)
    • Project Promosol, ProBiodiv  (2011-2014) Coordination A.M. Chèvre
    • Project ANR07 GPLA 07-024C AVirLep (2008-2011) Coordination: M. Balesdent (BIOGER)
    • Project ADD-ANR-CEDRE (2006-2009) Co-Coordination avec L. Bousset (BIO3P, Rennes)
    • Project UE FP5 SECURE  (2002-2006) Coordination: N. Evans (Rothamsted, UK)
    • Project UE FAIR (1998-2001) NORDIC Coordination : K. Glimelius (SLU, Uppsala, Sweden)
  • Gene flow from oilseed rape to its weeds
AMC_3

The development of transgenic (herbicide tolerant) oilseed rape in 1988 leaded to the question of gene flow from the crop to its weeds. After testing several weeds for their probability to produce interspecific hybrids (hand pollination and field experiments), we found that wild radish (Raphanus raphanistrum, RrRr, 2n=18) was one of the weed able to produce number of interspecific hybrids. After five generations under field conditions with pollination of hybrids with wild radish, we observed that three B. napus genomic regions had the highest probability to be introduced into wild radish genome, indicating that gene flow depends on initial location of the transgene into the crop (Adamczyk-Chauvat et al. 2017). We are trying to introduce bar gene in hot and cold reions using CRISPR-Cas9 technology in order to validate these results with herbicide selection pressure on larger populations under confined greenhouse conditions

    • Project PIA Genius (2012-2020) Coordination P. Rogowsky (ENS Lyon)
    • Project ANR OGM Natora (2008-2011) Coordination A.M. Chèvre
    • Project ANR MFD/AO OGM 0217 (2007-2009). Coordination B. Hau (CIRAD)
    • Project  ANR-06-POGM02 COBINA (2007-2010) Coordination : P.B. Joly (Evry)
    • Project ACI OGM : (2002-2005) Co-Coordination avec E. Jenczewski (IJPB, Versailles)
    • Project Ministère de l’Environnement Etude des barrières interspécifiques (1995-1996), Coordination A.M. Chèvre

Research animation

  • Member of Editorial boarding of Plant Breeding since 2001, BMC Genomics since 2016
  • Expert of national and international projects (BAP, RFI Végétal, BRG, ACI, ANR, MENRT, CTPS, ANR, ERC, Austian Science Fund, NWO Wageningen)
  • Member of INRA national scientific Committee GAP until 2011 and BAP since 2016
  • Member of several scientific committees: Risk in Ecology Ministry (since 2011), ANR Systerra (2009), Research Station UPR Montpellier 2005, UMR AGAP Montpellier (2017), Member of AERES commission 2010, Evaluation of CIRAD Scientists (2010)  
  • Members of scientific committees of international congresses: ESF Brassica gene flow (2001), International Conference on Polyploidy, Hybridization and Biodiversity ICPHB (2009), Crucifer workshop Catane (2012)
  • Members of scientific committees for different socio-economic partners: President of Vegenov COST since 2013, member of Vegepolys COST since 2013

 Teaching and Formation

  • Supervisor Master2 and PhD
  • Examiner of grant competition, reporter thesis committees and HDR
  • Member of the council of doctoral school EGAAL since 2017
  • Leader for the animation of PhD group (~70PhD/year) in Plant Breeding department (1997-2013).
  • Animation of public debates on GMO, polyploidy or durability
  • Interviews by journalists