En savoir plus

A propos des cookies

Qu’est-ce qu’un « cookie » ?

Un "cookie" est une suite d'informations, généralement de petite taille et identifié par un nom, qui peut être transmis à votre navigateur par un site web sur lequel vous vous connectez. Votre navigateur web le conservera pendant une certaine durée, et le renverra au serveur web chaque fois que vous vous y re-connecterez.

Différents types de cookies sont déposés sur les sites :

  • Cookies strictement nécessaires au bon fonctionnement du site
  • Cookies déposés par des sites tiers pour améliorer l’interactivité du site, pour collecter des statistiques

> En savoir plus sur les cookies et leur fonctionnement

Les différents types de cookies déposés sur ce site

Cookies strictement nécessaires au site pour fonctionner

Ces cookies permettent aux services principaux du site de fonctionner de manière optimale. Vous pouvez techniquement les bloquer en utilisant les paramètres de votre navigateur mais votre expérience sur le site risque d’être dégradée.

Par ailleurs, vous avez la possibilité de vous opposer à l’utilisation des traceurs de mesure d’audience strictement nécessaires au fonctionnement et aux opérations d’administration courante du site web dans la fenêtre de gestion des cookies accessible via le lien situé dans le pied de page du site.

Cookies techniques

Nom du cookie

Finalité

Durée de conservation

Cookies de sessions CAS et PHP

Identifiants de connexion, sécurisation de session

Session

Tarteaucitron

Sauvegarde vos choix en matière de consentement des cookies

12 mois

Cookies de mesure d’audience (AT Internet)

Nom du cookie

Finalité

Durée de conservation

atid

Tracer le parcours du visiteur afin d’établir les statistiques de visites.

13 mois

atuserid

Stocker l'ID anonyme du visiteur qui se lance dès la première visite du site

13 mois

atidvisitor

Recenser les numsites (identifiants unique d'un site) vus par le visiteur et stockage des identifiants du visiteur.

13 mois

À propos de l’outil de mesure d’audience AT Internet :

L’outil de mesure d’audience Analytics d’AT Internet est déployé sur ce site afin d’obtenir des informations sur la navigation des visiteurs et d’en améliorer l’usage.

L‘autorité française de protection des données (CNIL) a accordé une exemption au cookie Web Analytics d’AT Internet. Cet outil est ainsi dispensé du recueil du consentement de l’internaute en ce qui concerne le dépôt des cookies analytics. Cependant vous pouvez refuser le dépôt de ces cookies via le panneau de gestion des cookies.

À savoir :

  • Les données collectées ne sont pas recoupées avec d’autres traitements
  • Le cookie déposé sert uniquement à la production de statistiques anonymes
  • Le cookie ne permet pas de suivre la navigation de l’internaute sur d’autres sites.

Cookies tiers destinés à améliorer l’interactivité du site

Ce site s’appuie sur certains services fournis par des tiers qui permettent :

  • de proposer des contenus interactifs ;
  • d’améliorer la convivialité et de faciliter le partage de contenu sur les réseaux sociaux ;
  • de visionner directement sur notre site des vidéos et présentations animées ;
  • de protéger les entrées des formulaires contre les robots ;
  • de surveiller les performances du site.

Ces tiers collecteront et utiliseront vos données de navigation pour des finalités qui leur sont propres.

Accepter ou refuser les cookies : comment faire ?

Lorsque vous débutez votre navigation sur un site eZpublish, l’apparition du bandeau « cookies » vous permet d’accepter ou de refuser tous les cookies que nous utilisons. Ce bandeau s’affichera tant que vous n’aurez pas effectué de choix même si vous naviguez sur une autre page du site.

Vous pouvez modifier vos choix à tout moment en cliquant sur le lien « Gestion des cookies ».

Vous pouvez gérer ces cookies au niveau de votre navigateur. Voici les procédures à suivre :

Firefox ; Chrome ; Explorer ; Safari ; Opera

Pour obtenir plus d’informations concernant les cookies que nous utilisons, vous pouvez vous adresser au Déléguée Informatique et Libertés de INRAE par email à cil-dpo@inrae.fr ou par courrier à :

INRAE
24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan cedex - France

Dernière mise à jour : Mai 2021

Menu Logo Principal Institut Agro Rennes Angers Université Rennes Logo Igepp

Institut de Génétique, Environnement et Protection des Plantes

Génomique des Brassica (assemblage des génomes) et nouvelles technologies de séquençage

Coordinateurs : Cyril Falentin et Mathieu Rousseau-Gueutin

Contacts : Cyril.Falentin@inrae.fr etMathieu.Rousseau-Gueutin@inrae.fr

Recherche

Contexte et Problématiques

Les génomes végétaux sont caractérisés par la présence de génomes hautement dupliqués/répétés. Ceci rend très complexe l’assemblage de génomes via l’utilisation de technologies short reads : ces assemblages sont souvent incomplets et fragmentés. Avec l’arrivée de la 3ème génération de technologies de séquençage à haut débit, il est désormais possible de séquencer de longs fragments et d’utiliser des cartes optiques afin de produire des assemblages à l’échelle du chromosome. De plus, ces assemblages peuvent être réalisées en peu de temps et à relativement faible coût. Ces dernières années, en collaboration étroite avec l’équipe de Bioinformatique ‘RD and Sequencing’ du Genoscope (Evry, France), nous avons développé des protocoles pour l’extraction d’ADN de haut poids moléculaire et utilisé une méthodologie basée sur les longs reads (séquenceurs MinION ou PromethION sequencers, technologies Oxford Nanopore) et cartes optiques (système Saphyr, Bionano Genomics) afin de produire des assemblages à l’échelle du chromosome de différentes variétés de Brassica (rapa, oleracea, napus), comprenant les régions complexes et hautement répétées (centromères et télomères). Ces assemblages de haute qualité sont particulièrement importants pour l’identification et la compréhension fine de la régulation de gènes impliqués dans des caractères agronomiques importants. En plus de l’assemblage de génomes de Brassica, nous avons développé ou adapté des protocoles pour produire d’autres types de données NGS (HiC, BS-Seq, ChIP-Seq, Direct RNA or Small RNA Seq) afin de mieux comprendre la dynamique évolutive des gènes et génomes dupliqués et leur rôle dans la modification de caractères d’intérêt, tels que la recombinaison méiotique.

 Methodologie 

  • Extraction d’ADN de haut poids moléculaire
  • Utilisation de différentes technologies NGS (Illumina, Oxford Nanopore Technologies)
  • Cartes optiques (Bionano Genomics)
  • Genotypage (Illumina SNP array)

Principaux résultats

Ces dernières années, nous avons dédié beaucoup de temps et d’énergie à développer ou adapter des protocoles liés aux NGS. A partir de ce travail, principalement développé en collaboration étroite avec l’équipe de Bioinformatique ‘RD and Sequencing’ du Genoscope (Evry, France), nous avons produits des assemblages à l’échelle du chromosome de plusieurs variétés de Brassica en utilisant le séquençage long reads et les cartes optiques (Belser et al. 2018; Rousseau-Gueutin et al. 2020 ; Istace et al. 2021). En comparaison avec les précédents assemblages utilisant des short reads, ces assemblages sont bien plus complets, en particulier dans les régions hautement répétées telles que les centromères. Cette nette amélioration des qualités d’assemblage de génome va faciliter l’identification de gènes candidats impliqués dans des caractères d’intérêt. De plus, nous avons pu observer que la variabilité génomique intraspécifique peut être très importante (en termes de structure, contenu génique ou nombre de copies d’un gène) et qu’il était donc primordial de produire plusieurs assemblages de génome de haute qualité pour chaque espèce (Boutte et al. 2020). Pour cette raison, nous sommes actuellement en train de réaliser des assemblages de génomes de différents génotypes de Brassica qui sont importants pour nos projets de recherche, tels que ceux utilisés dans nos programmes sur la recombinaison ou dans la résistance à des stress biotiques.

Partenaires

  • CEA, Genoscope, Evry, France (équipe ‘Research and Development Bioinformatics and Sequencing’)

Financement (5 dernières années) 

  • France Génomique ‘Polysuccess’ (2014-2020). How a polyploid becomes a new species: Brassica model (P.I.: A.M. Chèvre)

Publications (5 dernières années)

  • Istace B., Belser C., Falentin C., Labadie K., Boideau F., Deniot G., Maillet L., Cruaud C., Bertrand L., Chèvre A.M., Wincker P., Rousseau-Gueutin M., Aury J.M. (2021) Sequencing and Chromosome-Scale Assembly of Plant Genomes, Brassica rapa as a Use Case. Biology 10(8), 732
  • Rousseau-Gueutin M; Belser C; Da Silva C; Richard G; Istace B; Cruaud C; Falentin C; Boideau F; Boutte J; Delourme R; Deniot G; Engelen S; de Carvalho JF; Lemainque A; Maillet L; Morice J; Wincker P; Denoeud F; Chèvre A; Aury JM (2020): "Long-reads assembly
    of the Brassica napus reference genome, Darmor-bzh" GigaScience 9 (12) giaa137
  • Boutte J, Maillet L, Chaussepied T, Letort S, Aury JM, Belser C, Boideau F, Brunet A, Coriton O, Deniot G, Falentin C, Huteau V, Lodé-Taburel M, Morice J, Trotoux G, Chèvre AM, Rousseau-Gueutin M, Ferreira de Carvalho (2020)  Genome Size Variation and Comparative Genomics Reveal Intraspecific Diversity in Brassica rapa. Front Plant Sci 11: 577536.
  • Belser C., Istace B., Denis E., Dubarry M., Baurens F.-C., Falentin C., Genete M., Berrabah W., Chèvre A. M., Delourme R., Deniot G., Denoeud F., Duffé P., Engelen S., Lemainque A., Manzanares-Dauleux M. J., Martin G., Morice J., Noel B., Vekemans X., D’Hont A., Rousseau-Gueutin M., Barbe V., Cruaud C., Wincker P. & Aury J.-M. (2018). Chromosome-scale assemblies of plant genomes using nanopore long reads and optical maps. Nature Plants, 4(11), 879-887.  https://doi.org/10.1038/s41477-018-0289-4

Chapîtres d’ouvrage 

  • Falentin C. (2018). Séquençage d'ADN grande longueur par la technique Nanopore. In D. Tagu, S. Jaubert-Possamai, & A. Méreau (Eds.), Principes des techniques de biologie moléculaire et génomique (pp. 193-196): Quae.
  • Falentin C. (2018). Cartographie optique de génomes (Optical Mapping). In D. Tagu, S. Jaubert-Possamai, & A. Méreau (Eds.), Principes des techniques de biologie moléculaire et génomique (pp. 204-207): Quae.
  • Falentin C. (2018). Séquençage d'ADN grande longueur "synthétique" par la technique 10X Genomics. In D. Tagu, S. Jaubert-Possamai, & A. Méreau (Eds.), Principes des techniques de biologie moléculaire et génomique (pp. 201-203): Quae.
  • Falentin C. (2018). Séquençage d'ADN par la technique Illumina. In D. Tagu, S. Jaubert-Possamai, & A. Méreau (Eds.), Principes des techniques de biologie moléculaire et génomique (pp. 186-189): Quae.
  • Falentin C. (2018). Séquençage d'ADN par la technique Ion TorrentTM. In D. Tagu, S. Jaubert-Possamai, & A. Méreau (Eds.), Principes des techniques de biologie moléculaire et génomique (pp. 197-200): Quae.
  • Falentin C. (2018). Séquençage d'ADN par la technique Single Molecule real Time (SMRT) : PacBio. In D. Tagu, S. Jaubert-Possamai, & A. Méreau (Eds.), Principes des techniques de biologie moléculaire et génomique (pp. 190-192): Quae.